**`default_layer`** indicates a base keymap layer(0-31) which is always valid and to be referred, **`keymap_stat`** is 16bit variable which has current on/off status of layers on its each bit.
Keymap layer '0' is usually `default_layer` and which is the only valid layer and other layers is initially off after boot up firmware, though, you can configured them in `config.h`.
To change `default_layer` will be useful when you switch key layout completely, say you want Colmak instead of Qwerty.
Initial state of Keymap Change base layout
----------------------- ------------------
31 31
30 30
29 29
: :
: : ____________
2 ____________ 2 / /
1 / / ,->1 /___________/
,->0 /___________/ | 0
| |
`--- default_layer = 0 `--- default_layer = 1
layer_state = 0x00000001 layer_state = 0x00000002
On the other hand, you shall change `layer_state` to overlay base layer with some layers for feature such as navigation keys, function key(F1-F12), media keys or special actions.
Note that ***higher layer has higher priority on stack of layers***, namely firmware falls down from top layer to bottom to look up keycode. Once it spots keycode other than **`KC_TRNS`**(transparent) on a layer it stops searching and lower layers aren't referred.
You can place `KC_TRNS` on overlay layer changes just part of layout to fall back on lower or base layer.
Keymap is **`keymaps[]`** C array in fact and you can define layers in it with **`KEYMAP()`** C macro and keycodes. To use complex actions you need to define `Fn` keycode in **`fn_actions[]`** array.
This is a keymap example for [HHKB](http://en.wikipedia.org/wiki/Happy_Hacking_Keyboard) keyboard.
This example has three layers, 'Qwerty' as base layer, 'Cursor' and 'Mousekey'.
In this example,
`Fn0` is a **momentary layer switching** key, you can use keys on Cursor layer while holding the key.
`Fn1` is a momentary layer switching key with tapping feature, you can get semicolon **';'** with taping the key and switch layers while holding the key. The word **'tap'** or **'tapping'** mean to press and release a key quickly.
`Fn2` is a **toggle layer switch** key, you can stay switched layer after releasing the key unlike momentary switching.
You can find other keymap definitions in file `keymap.c` located on project directories.
See [`common/keycode.h`](../common/keycode.h) or keycode table below for the detail. Keycode is internal **8bit code** to indicate action performed on key in keymap. Keycode has `KC_` prefixed symbol respectively. Most of keycodes like `KC_A` have simple action registers key to host on press and unregister on release, while some of other keycodes has some special actions like `Fn` keys, Media control keys, System control keys and Mousekeys.
***In `KEYMAP()` macro you should omit prefix part `KC_` of keycode to keep keymap compact.*** For example, just use `A` instead you place `KC_A` in `KEYMAP()`. Some keycodes has 4-letter **short name** in addition to descriptive name, you'll prefer short one in `KEYMAP()`.
`KC_FNnn` are keycodes for `Fn` key which not given any actions at the beginning unlike most of keycodes has its own inborn action. To use these keycodes in `KEYMAP()` you need to assign action you want at first. Action of `Fn` key is defined in `fn_actions[]` and its index of the array is identical with number part of `KC_FNnn`. Thus `KC_FN0` keycode indicates the action defined in first element of the array. ***32 `Fn` keys can be defined at most.***
In regard to implementation side most of keycodes are identical with [HID usage][HID_usage](pdf) sent to host for real and some virtual keycodes are defined to support special actions.
See [`common/action_code.h`](../common/action_code.h). Action is a **16bit code** and defines function to perform on events of a key like press, release, holding and tapping.
Most of keys just register 8bit scancode to host, but to support other complex features needs 16bit extended action codes internally. However, using 16bit action codes in keymap results in double size in memory compared to using just keycodes. To avoid this waste 8bit keycodes are used in `KEYMAP()` instead of action codes.
***You can just use keycodes of `Normal key`, `Modifier`, `Mousekey` and `System & Media key` in keymap*** to indicate corresponding actions instead of using action codes. While ***to use other special actions you should use keycode of `Fn` key defined in `fn_actions[]`.***
Or `Alt,Shift + Tab` can be defined. `ACTION_MODS_KEY(mods, key)` requires **4-bit modifier state** and a **keycode** as arguments. See `keycode.h` for `MOD_BIT()` macro.
This C function is called every time key is operated, argument `id` selects action to be performed and `opt` can be used for option. Function `id` can be 0-255 and `opt` can be 0-15.
`keyrecord_t` is comprised of key event and tap count. `keyevent_t` indicates which and when key is pressed or released. From `tap_count` you can know tap state, 0 means no tap. These information will be used in user function to decide how action of key is performed.
This action makes 'Layer 1' active(valid) on key press event and inactive on release event. Namely you can overlay a layer on lower layers or default layer temporarily with this action.
Note that after switching on press the actions on destination layer(Layer 1) are performed.
***Thus you shall need to place an action to go back on destination layer***, or you will be stuck in destination layer without way to get back. Usually you need to place same action or 'KC_TRNS` on destination layer to get back.
Toggle switching performed after releasing a key. With this action you can keep staying on the destination layer until you type the key again to return.
With this you can place a layer switching action on normal key like ';' without losing its original key register function. This action allows you to have layer switching action without necessity of a dedicated key. It means you can have it even on home row of keyboard.
Tapping is to press and release a key quickly. Tapping speed is determined with setting of `TAPPING_TERM`, which can be defined in `config.h`, 200ms by default.
This is a feature to assign normal key action and modifier including layer switching to just same one physical key. This is a kind of [Dual role key][dual_role]. It works as modifier when holding the key but registers normal key when tapping.
This is a feature to assign both toggle layer and momentary switch layer action to just same one physical key. It works as momentary layer switch when holding a key but toggle switch with several taps.
This runs onetime effects which modify only on just one following key. It works as normal modifier key when holding down while oneshot modifier when tapping.
Say you want to type 'The', you have to push and hold Shift key before type 't' then release it before type 'h' and 'e', otherwise you'll get 'THe' or 'the' unintentionally. With Oneshot Modifier you can tap Shift then type 't', 'h' and 'e' normally, you don't need to holding Shift key properly here. This mean you can release Shift before 't' is pressed down.
Similar to layer tap toggle, this works as a momentary modifier when holding, but toggles on with several taps. A single tap will 'unstick' the modifier again.
This was used in prior version and still works due to legacy support code in `common/keymap.c`. Legacy keymap doesn't support many of featuresthat new keymap offers. ***It is not recommended to use Legacy Keymap for new project.***
To enable Legacy Keymap support define this macro in `config.h`.
Legacy Keymap uses two arrays `fn_layer[]` and `fn_keycode[]` to define Fn key. The index of arrays corresponds with postfix number of `Fn` key. Array `fn_layer[]` indicates destination layer to switch and `fn_keycode[]` has keycodes to send when tapping `Fn` key.
In following setting example, `Fn0`, `Fn1` and `Fn2` switch layer to 1, 2 and 2 respectively. `Fn2` registers `Space` key when tapping while `Fn0` and `Fn1` doesn't send any key.