1
0
Fork 0

Merge pull request #1021 from luizribeiro/ps2avrGB

Support for ps2avrGB / winkeyless.kr boards
This commit is contained in:
Jack Humbert 2017-01-22 18:58:46 -05:00 committed by GitHub
commit a54944ac33
19 changed files with 877 additions and 18 deletions

View file

@ -2,7 +2,6 @@ os: linux
dist: trusty dist: trusty
sudo: required sudo: required
language: c language: c
compiler: avr-gcc
branches: branches:
except: except:
- /^.*-automated-build$/ - /^.*-automated-build$/
@ -12,13 +11,18 @@ env:
matrix: matrix:
- TARGET=all-keyboards AUTOGEN=true - TARGET=all-keyboards AUTOGEN=true
- TARGET=test AUTOGEN=false - TARGET=test AUTOGEN=false
before_install:
- wget http://www.atmel.com/images/avr8-gnu-toolchain-3.5.4.1709-linux.any.x86_64.tar.gz
install:
- tar -zxf avr8-gnu-toolchain-3.5.4.1709-linux.any.x86_64.tar.gz
- export PATH="$PATH:$TRAVIS_BUILD_DIR/avr8-gnu-toolchain-linux_x86_64/bin"
before_script:
- avr-gcc --version
script: script:
- make $TARGET AUTOGEN=$AUTOGEN - make $TARGET AUTOGEN=$AUTOGEN
addons: addons:
apt: apt:
packages: packages:
- avr-libc
- gcc-avr
- dfu-programmer - dfu-programmer
- pandoc - pandoc
- gcc-arm-none-eabi - gcc-arm-none-eabi

View file

@ -221,7 +221,11 @@ OPT_DEFS += $(TMK_COMMON_DEFS)
EXTRALDFLAGS += $(TMK_COMMON_LDFLAGS) EXTRALDFLAGS += $(TMK_COMMON_LDFLAGS)
ifeq ($(PLATFORM),AVR) ifeq ($(PLATFORM),AVR)
ifeq ($(strip $(PROTOCOL)), VUSB)
include $(TMK_PATH)/protocol/vusb.mk
else
include $(TMK_PATH)/protocol/lufa.mk include $(TMK_PATH)/protocol/lufa.mk
endif
include $(TMK_PATH)/avr.mk include $(TMK_PATH)/avr.mk
endif endif

View file

@ -0,0 +1,3 @@
ifndef MAKEFILE_INCLUDED
include ../../Makefile
endif

View file

@ -0,0 +1,61 @@
ps2avrGB keyboard firmware
==========================
This is a port of the QMK firmware for boards that are based on the
ps2avrGB firmware, like the [ps2avrGB
keyboard](https://www.keyclack.com/product/gb-ps2avrgb/) or the ones sold
by [Winkeyless](http://winkeyless.kr/product/ps2avrgb-parts/).
Note that this is a complete replacement for the firmware, so you won't be
using Bootmapper Client to change any keyboard settings, since not all the
USB report options are supported.
## Supported Boards
Only the [B.mini X2](http://winkeyless.kr/product/b-mini-x2-pcb/) has been
tested so far (since it's the only one I own). But other boards that use
the ps2avrGB firmware should work as well.
## Installing
First, install the requirements. These commands are for OSX, but all you
need is the AVR toolchain and `bootloadHID` for flashing:
```
$ brew cask install crosspack-avr
$ brew install --HEAD https://raw.githubusercontent.com/robertgzr/homebrew-tap/master/bootloadhid.rb
```
In order to use the `./program` script, which can reboot the board into
the bootloader, you'll need Python 2 with PyUSB installed:
```
$ pip install pyusb
```
Then, with the keyboard plugged in, simply run this command from the
`qmk_firmware` directory:
```
$ make ps2avrGB-program
```
If you prefer, you can just build it and flash the firmware directly with
`bootloadHID` if you boot the board while holding down `L_Ctrl` to keep it
in the bootloader:
```
$ make ps2avrGB
$ bootloadHID -r ps2avrGB_default.hex
```
## Troubleshooting
From my experience, it's really hard to brick these boards. But these
tricks have been useful when it got stuck in a weird scenario.
1. Try plugging the board in while pressing `L_Ctrl`. This will force it
to boot only the bootloader without loading the firmware. Once this is
done, just reflash the board with the original firmware.
2. Sometimes USB hubs can act weird, so try connecting the board directly
to your computer or plugging/unplugging the USB hub.

View file

@ -0,0 +1,38 @@
/*
Copyright 2017 Luiz Ribeiro <luizribeiro@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CONFIG_H
#define CONFIG_H
#define VENDOR_ID 0x20A0
#define PRODUCT_ID 0x422D
// TODO: share these strings with usbconfig.h
// Edit usbconfig.h to change these.
#define MANUFACTURER winkeyless.kr
#define PRODUCT ps2avrGB
/* matrix size */
#define MATRIX_ROWS 8
#define MATRIX_COLS 15
#define NO_UART 1
#define BOOTLOADHID_BOOTLOADER 1
/* key combination for command */
#define IS_COMMAND() (keyboard_report->mods == (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT)))
#endif

View file

@ -0,0 +1,32 @@
/*
Copyright 2017 Luiz Ribeiro <luizribeiro@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ps2avrGB.h"
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
KEYMAP( \
ESC, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, PSCR,HOME,END, \
GRV, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, MINS,EQL, BSPC, DEL, \
TAB, Q, W, E, R, T, Y, U, I, O, P, LBRC,RBRC,BSLS, INS, \
CAPS,A, S, D, F, G, H, J, K, L, SCLN,QUOT,ENT, PGUP,\
LSFT,Z, X, C, V, B, N, M, COMM,DOT, SLSH,RSFT, UP, PGDN,\
LCTL,LALT,LGUI, SPC, RGUI,RALT,RCTL,LEFT,DOWN,RGHT \
),
};
const uint16_t PROGMEM fn_actions[] = {
};

104
keyboards/ps2avrGB/matrix.c Normal file
View file

@ -0,0 +1,104 @@
/*
Copyright 2017 Luiz Ribeiro <luizribeiro@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <avr/io.h>
#include <util/delay.h>
#include "matrix.h"
#ifndef DEBOUNCE
# define DEBOUNCE 5
#endif
static uint8_t debouncing = DEBOUNCE;
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
void matrix_init(void) {
// all outputs for rows high
DDRB = 0xFF;
PORTB = 0xFF;
// all inputs for columns
DDRA = 0x00;
DDRC &= ~(0x111111<<2);
DDRD &= ~(1<<PIND7);
// all columns are pulled-up
PORTA = 0xFF;
PORTC |= (0b111111<<2);
PORTD |= (1<<PIND7);
// initialize matrix state: all keys off
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
matrix[row] = 0x00;
matrix_debouncing[row] = 0x00;
}
}
void matrix_set_row_status(uint8_t row) {
DDRB = (1 << row);
PORTB = ~(1 << row);
}
uint8_t bit_reverse(uint8_t x) {
x = ((x >> 1) & 0x55) | ((x << 1) & 0xaa);
x = ((x >> 2) & 0x33) | ((x << 2) & 0xcc);
x = ((x >> 4) & 0x0f) | ((x << 4) & 0xf0);
return x;
}
uint8_t matrix_scan(void) {
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
matrix_set_row_status(row);
_delay_us(5);
matrix_row_t cols = (
// cols 0..7, PORTA 0 -> 7
(~PINA) & 0xFF
) | (
// cols 8..13, PORTC 7 -> 0
bit_reverse((~PINC) & 0xFF) << 8
) | (
// col 14, PORTD 7
((~PIND) & (1 << PIND7)) << 7
);
if (matrix_debouncing[row] != cols) {
matrix_debouncing[row] = cols;
debouncing = DEBOUNCE;
}
}
if (debouncing) {
if (--debouncing) {
_delay_ms(1);
} else {
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
matrix[i] = matrix_debouncing[i];
}
}
}
return 1;
}
inline matrix_row_t matrix_get_row(uint8_t row) {
return matrix[row];
}
void matrix_print(void) {
}

74
keyboards/ps2avrGB/program Executable file
View file

@ -0,0 +1,74 @@
#!/usr/bin/env python
# Copyright 2017 Luiz Ribeiro <luizribeiro@gmail.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from __future__ import print_function
import os
import sys
import time
import usb
if len(sys.argv) < 2:
print('Usage: %s <firmware.hex>' % sys.argv[0])
sys.exit(1)
print('Searching for ps2avrGB... ', end='')
dev = usb.core.find(idVendor=0x20A0, idProduct=0x422D)
if dev is None:
raise ValueError('Device not found')
print('Found', end='\n\n')
print('Device Information:')
print(' idVendor: %d (0x%04x)' % (dev.idVendor, dev.idVendor))
print(' idProduct: %d (0x%04x)' % (dev.idProduct, dev.idProduct))
print('Manufacturer: %s' % (dev.iManufacturer))
print('Serial: %s' % (dev.iSerialNumber))
print('Product: %s' % (dev.iProduct), end='\n\n')
print('Transferring control to bootloader... ', end='')
dev.set_configuration()
request_type = usb.util.build_request_type(
usb.util.CTRL_OUT,
usb.util.CTRL_TYPE_CLASS,
usb.util.CTRL_RECIPIENT_DEVICE)
USBRQ_HID_SET_REPORT = 0x09
HID_REPORT_OPTION = 0x0301
try:
dev.ctrl_transfer(
request_type,
USBRQ_HID_SET_REPORT,
HID_REPORT_OPTION,
0,
[0, 0, 0xFF] + [0] * 5
)
except usb.core.USBError:
# for some reason I keep getting USBError, but it works!
pass
# wait a bit until bootloader starts up
time.sleep(2)
print('OK')
print('Programming...')
if os.system('bootloadHID -r "%s"' % sys.argv[1]) == 0:
print('\nDone!')

View file

View file

@ -0,0 +1,43 @@
/*
Copyright 2017 Luiz Ribeiro <luizribeiro@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef KEYMAP_COMMON_H
#define KEYMAP_COMMON_H
#include "keycode.h"
#include "action.h"
#define KEYMAP( \
K05, K25, K35, K45, K55, K06, KA6, KA7, K07, KB5, KC5, KD5, KE5, KD1, KE1, KE2, \
K04, K14, K24, K34, K44, K54, K16, KB6, KB7, K17, KA4, KB4, KC4, KE4, KD0, \
K03, K13, K23, K33, K43, K53, K26, KC6, KC7, K27, KA3, KB3, KC3, KD3, K67, \
K02, K12, K22, K32, K42, K52, K36, KD6, KD7, K37, KA2, KB2, KD2, KE0, \
K01, K11, K21, K31, K41, K51, K46, KE6, KE7, K47, KA1, KB1, K86, K77, \
K00, K10, K20, K56, K57, KB0, KC0, K66, K76, K96 \
) \
{ \
{ KC_##K00, KC_##K10, KC_##K20, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_##KB0, KC_##KC0, KC_##KD0, KC_##KE0 }, \
{ KC_##K01, KC_##K11, KC_##K21, KC_##K31, KC_##K41, KC_##K51, KC_NO, KC_NO, KC_NO, KC_NO, KC_##KA1, KC_##KB1, KC_NO, KC_##KD1, KC_##KE1 }, \
{ KC_##K02, KC_##K12, KC_##K22, KC_##K32, KC_##K42, KC_##K52, KC_NO, KC_NO, KC_NO, KC_NO, KC_##KA2, KC_##KB2, KC_NO, KC_##KD2, KC_##KE2 }, \
{ KC_##K03, KC_##K13, KC_##K23, KC_##K33, KC_##K43, KC_##K53, KC_NO, KC_NO, KC_NO, KC_NO, KC_##KA3, KC_##KB3, KC_##KC3, KC_##KD3, KC_NO }, \
{ KC_##K04, KC_##K14, KC_##K24, KC_##K34, KC_##K44, KC_##K54, KC_NO, KC_NO, KC_NO, KC_NO, KC_##KA4, KC_##KB4, KC_##KC4, KC_NO, KC_##KE4 }, \
{ KC_##K05, KC_NO, KC_##K25, KC_##K35, KC_##K45, KC_##K55, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_##KB5, KC_##KC5, KC_##KD5, KC_##KE5 }, \
{ KC_##K06, KC_##K16, KC_##K26, KC_##K36, KC_##K46, KC_##K56, KC_##K66, KC_##K76, KC_##K86, KC_##K96, KC_##KA6, KC_##KB6, KC_##KC6, KC_##KD6, KC_##KE6 }, \
{ KC_##K07, KC_##K17, KC_##K27, KC_##K37, KC_##K47, KC_##K57, KC_##K67, KC_##K77, KC_NO, KC_NO, KC_##KA7, KC_##KB7, KC_##KC7, KC_##KD7, KC_##KE7 } \
}
#endif

View file

@ -0,0 +1,43 @@
# Copyright 2017 Luiz Ribeiro <luizribeiro@gmail.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# MCU name
MCU = atmega32a
PROTOCOL = VUSB
# unsupported features for now
NO_UART = yes
NO_SUSPEND_POWER_DOWN = yes
BACKLIGHT_ENABLE = no
# processor frequency
F_CPU = 12000000
# build options
BOOTMAGIC_ENABLE = yes
MOUSEKEY_ENABLE = yes
EXTRAKEY_ENABLE = yes
CONSOLE_ENABLE = yes
COMMAND_ENABLE = yes
OPT_DEFS = -DDEBUG_LEVEL=0
OPT_DEFS += -DBOOTLOADER_SIZE=2048
# custom matrix setup
CUSTOM_MATRIX = yes
SRC = matrix.c
# programming options
PROGRAM_CMD = ./keyboards/ps2avrGB/program $(TARGET).hex

View file

@ -0,0 +1,396 @@
/* Name: usbconfig.h
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2005-04-01
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
* This Revision: $Id: usbconfig-prototype.h 785 2010-05-30 17:57:07Z cs $
*/
#ifndef __usbconfig_h_included__
#define __usbconfig_h_included__
#include "config.h"
/*
General Description:
This file is an example configuration (with inline documentation) for the USB
driver. It configures V-USB for USB D+ connected to Port D bit 2 (which is
also hardware interrupt 0 on many devices) and USB D- to Port D bit 4. You may
wire the lines to any other port, as long as D+ is also wired to INT0 (or any
other hardware interrupt, as long as it is the highest level interrupt, see
section at the end of this file).
*/
/* ---------------------------- Hardware Config ---------------------------- */
#define USB_CFG_IOPORTNAME D
/* This is the port where the USB bus is connected. When you configure it to
* "B", the registers PORTB, PINB and DDRB will be used.
*/
#define USB_CFG_DMINUS_BIT 3
/* This is the bit number in USB_CFG_IOPORT where the USB D- line is connected.
* This may be any bit in the port.
*/
#define USB_CFG_DPLUS_BIT 2
/* This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected.
* This may be any bit in the port. Please note that D+ must also be connected
* to interrupt pin INT0! [You can also use other interrupts, see section
* "Optional MCU Description" below, or you can connect D- to the interrupt, as
* it is required if you use the USB_COUNT_SOF feature. If you use D- for the
* interrupt, the USB interrupt will also be triggered at Start-Of-Frame
* markers every millisecond.]
*/
#define USB_CFG_CLOCK_KHZ (F_CPU/1000)
/* Clock rate of the AVR in kHz. Legal values are 12000, 12800, 15000, 16000,
* 16500, 18000 and 20000. The 12.8 MHz and 16.5 MHz versions of the code
* require no crystal, they tolerate +/- 1% deviation from the nominal
* frequency. All other rates require a precision of 2000 ppm and thus a
* crystal!
* Since F_CPU should be defined to your actual clock rate anyway, you should
* not need to modify this setting.
*/
#define USB_CFG_CHECK_CRC 0
/* Define this to 1 if you want that the driver checks integrity of incoming
* data packets (CRC checks). CRC checks cost quite a bit of code size and are
* currently only available for 18 MHz crystal clock. You must choose
* USB_CFG_CLOCK_KHZ = 18000 if you enable this option.
*/
/* ----------------------- Optional Hardware Config ------------------------ */
/* #define USB_CFG_PULLUP_IOPORTNAME D */
/* If you connect the 1.5k pullup resistor from D- to a port pin instead of
* V+, you can connect and disconnect the device from firmware by calling
* the macros usbDeviceConnect() and usbDeviceDisconnect() (see usbdrv.h).
* This constant defines the port on which the pullup resistor is connected.
*/
/* #define USB_CFG_PULLUP_BIT 4 */
/* This constant defines the bit number in USB_CFG_PULLUP_IOPORT (defined
* above) where the 1.5k pullup resistor is connected. See description
* above for details.
*/
/* --------------------------- Functional Range ---------------------------- */
#define USB_CFG_HAVE_INTRIN_ENDPOINT 1
/* Define this to 1 if you want to compile a version with two endpoints: The
* default control endpoint 0 and an interrupt-in endpoint (any other endpoint
* number).
*/
#define USB_CFG_HAVE_INTRIN_ENDPOINT3 1
/* Define this to 1 if you want to compile a version with three endpoints: The
* default control endpoint 0, an interrupt-in endpoint 3 (or the number
* configured below) and a catch-all default interrupt-in endpoint as above.
* You must also define USB_CFG_HAVE_INTRIN_ENDPOINT to 1 for this feature.
*/
#define USB_CFG_EP3_NUMBER 3
/* If the so-called endpoint 3 is used, it can now be configured to any other
* endpoint number (except 0) with this macro. Default if undefined is 3.
*/
/* #define USB_INITIAL_DATATOKEN USBPID_DATA1 */
/* The above macro defines the startup condition for data toggling on the
* interrupt/bulk endpoints 1 and 3. Defaults to USBPID_DATA1.
* Since the token is toggled BEFORE sending any data, the first packet is
* sent with the oposite value of this configuration!
*/
#define USB_CFG_IMPLEMENT_HALT 0
/* Define this to 1 if you also want to implement the ENDPOINT_HALT feature
* for endpoint 1 (interrupt endpoint). Although you may not need this feature,
* it is required by the standard. We have made it a config option because it
* bloats the code considerably.
*/
#define USB_CFG_SUPPRESS_INTR_CODE 0
/* Define this to 1 if you want to declare interrupt-in endpoints, but don't
* want to send any data over them. If this macro is defined to 1, functions
* usbSetInterrupt() and usbSetInterrupt3() are omitted. This is useful if
* you need the interrupt-in endpoints in order to comply to an interface
* (e.g. HID), but never want to send any data. This option saves a couple
* of bytes in flash memory and the transmit buffers in RAM.
*/
#define USB_CFG_INTR_POLL_INTERVAL 1
/* If you compile a version with endpoint 1 (interrupt-in), this is the poll
* interval. The value is in milliseconds and must not be less than 10 ms for
* low speed devices.
*/
#define USB_CFG_IS_SELF_POWERED 0
/* Define this to 1 if the device has its own power supply. Set it to 0 if the
* device is powered from the USB bus.
*/
#define USB_CFG_MAX_BUS_POWER 500
/* Set this variable to the maximum USB bus power consumption of your device.
* The value is in milliamperes. [It will be divided by two since USB
* communicates power requirements in units of 2 mA.]
*/
#define USB_CFG_IMPLEMENT_FN_WRITE 1
/* Set this to 1 if you want usbFunctionWrite() to be called for control-out
* transfers. Set it to 0 if you don't need it and want to save a couple of
* bytes.
*/
#define USB_CFG_IMPLEMENT_FN_READ 0
/* Set this to 1 if you need to send control replies which are generated
* "on the fly" when usbFunctionRead() is called. If you only want to send
* data from a static buffer, set it to 0 and return the data from
* usbFunctionSetup(). This saves a couple of bytes.
*/
#define USB_CFG_IMPLEMENT_FN_WRITEOUT 0
/* Define this to 1 if you want to use interrupt-out (or bulk out) endpoints.
* You must implement the function usbFunctionWriteOut() which receives all
* interrupt/bulk data sent to any endpoint other than 0. The endpoint number
* can be found in 'usbRxToken'.
*/
#define USB_CFG_HAVE_FLOWCONTROL 0
/* Define this to 1 if you want flowcontrol over USB data. See the definition
* of the macros usbDisableAllRequests() and usbEnableAllRequests() in
* usbdrv.h.
*/
#define USB_CFG_DRIVER_FLASH_PAGE 0
/* If the device has more than 64 kBytes of flash, define this to the 64 k page
* where the driver's constants (descriptors) are located. Or in other words:
* Define this to 1 for boot loaders on the ATMega128.
*/
#define USB_CFG_LONG_TRANSFERS 0
/* Define this to 1 if you want to send/receive blocks of more than 254 bytes
* in a single control-in or control-out transfer. Note that the capability
* for long transfers increases the driver size.
*/
/* #define USB_RX_USER_HOOK(data, len) if(usbRxToken == (uchar)USBPID_SETUP) blinkLED(); */
/* This macro is a hook if you want to do unconventional things. If it is
* defined, it's inserted at the beginning of received message processing.
* If you eat the received message and don't want default processing to
* proceed, do a return after doing your things. One possible application
* (besides debugging) is to flash a status LED on each packet.
*/
/* #define USB_RESET_HOOK(resetStarts) if(!resetStarts){hadUsbReset();} */
/* This macro is a hook if you need to know when an USB RESET occurs. It has
* one parameter which distinguishes between the start of RESET state and its
* end.
*/
/* #define USB_SET_ADDRESS_HOOK() hadAddressAssigned(); */
/* This macro (if defined) is executed when a USB SET_ADDRESS request was
* received.
*/
#define USB_COUNT_SOF 1
/* define this macro to 1 if you need the global variable "usbSofCount" which
* counts SOF packets. This feature requires that the hardware interrupt is
* connected to D- instead of D+.
*/
/* #ifdef __ASSEMBLER__
* macro myAssemblerMacro
* in YL, TCNT0
* sts timer0Snapshot, YL
* endm
* #endif
* #define USB_SOF_HOOK myAssemblerMacro
* This macro (if defined) is executed in the assembler module when a
* Start Of Frame condition is detected. It is recommended to define it to
* the name of an assembler macro which is defined here as well so that more
* than one assembler instruction can be used. The macro may use the register
* YL and modify SREG. If it lasts longer than a couple of cycles, USB messages
* immediately after an SOF pulse may be lost and must be retried by the host.
* What can you do with this hook? Since the SOF signal occurs exactly every
* 1 ms (unless the host is in sleep mode), you can use it to tune OSCCAL in
* designs running on the internal RC oscillator.
* Please note that Start Of Frame detection works only if D- is wired to the
* interrupt, not D+. THIS IS DIFFERENT THAN MOST EXAMPLES!
*/
#define USB_CFG_CHECK_DATA_TOGGLING 0
/* define this macro to 1 if you want to filter out duplicate data packets
* sent by the host. Duplicates occur only as a consequence of communication
* errors, when the host does not receive an ACK. Please note that you need to
* implement the filtering yourself in usbFunctionWriteOut() and
* usbFunctionWrite(). Use the global usbCurrentDataToken and a static variable
* for each control- and out-endpoint to check for duplicate packets.
*/
#define USB_CFG_HAVE_MEASURE_FRAME_LENGTH 0
/* define this macro to 1 if you want the function usbMeasureFrameLength()
* compiled in. This function can be used to calibrate the AVR's RC oscillator.
*/
#define USB_USE_FAST_CRC 0
/* The assembler module has two implementations for the CRC algorithm. One is
* faster, the other is smaller. This CRC routine is only used for transmitted
* messages where timing is not critical. The faster routine needs 31 cycles
* per byte while the smaller one needs 61 to 69 cycles. The faster routine
* may be worth the 32 bytes bigger code size if you transmit lots of data and
* run the AVR close to its limit.
*/
/* -------------------------- Device Description --------------------------- */
#define USB_CFG_VENDOR_ID (VENDOR_ID & 0xFF), ((VENDOR_ID >> 8) & 0xFF)
/* USB vendor ID for the device, low byte first. If you have registered your
* own Vendor ID, define it here. Otherwise you may use one of obdev's free
* shared VID/PID pairs. Be sure to read USB-IDs-for-free.txt for rules!
* *** IMPORTANT NOTE ***
* This template uses obdev's shared VID/PID pair for Vendor Class devices
* with libusb: 0x16c0/0x5dc. Use this VID/PID pair ONLY if you understand
* the implications!
*/
#define USB_CFG_DEVICE_ID (PRODUCT_ID & 0xFF), ((PRODUCT_ID >> 8) & 0xFF)
/* This is the ID of the product, low byte first. It is interpreted in the
* scope of the vendor ID. If you have registered your own VID with usb.org
* or if you have licensed a PID from somebody else, define it here. Otherwise
* you may use one of obdev's free shared VID/PID pairs. See the file
* USB-IDs-for-free.txt for details!
* *** IMPORTANT NOTE ***
* This template uses obdev's shared VID/PID pair for Vendor Class devices
* with libusb: 0x16c0/0x5dc. Use this VID/PID pair ONLY if you understand
* the implications!
*/
#define USB_CFG_DEVICE_VERSION 0x00, 0x02
/* Version number of the device: Minor number first, then major number.
*/
#define USB_CFG_VENDOR_NAME 'w', 'i', 'n', 'k', 'e', 'y', 'l', 'e', 's', 's', '.', 'k', 'r'
#define USB_CFG_VENDOR_NAME_LEN 13
/* These two values define the vendor name returned by the USB device. The name
* must be given as a list of characters under single quotes. The characters
* are interpreted as Unicode (UTF-16) entities.
* If you don't want a vendor name string, undefine these macros.
* ALWAYS define a vendor name containing your Internet domain name if you use
* obdev's free shared VID/PID pair. See the file USB-IDs-for-free.txt for
* details.
*/
#define USB_CFG_DEVICE_NAME 'p', 's', '2', 'a', 'v', 'r', 'G', 'B'
#define USB_CFG_DEVICE_NAME_LEN 8
/* Same as above for the device name. If you don't want a device name, undefine
* the macros. See the file USB-IDs-for-free.txt before you assign a name if
* you use a shared VID/PID.
*/
/*#define USB_CFG_SERIAL_NUMBER 'N', 'o', 'n', 'e' */
/*#define USB_CFG_SERIAL_NUMBER_LEN 0 */
/* Same as above for the serial number. If you don't want a serial number,
* undefine the macros.
* It may be useful to provide the serial number through other means than at
* compile time. See the section about descriptor properties below for how
* to fine tune control over USB descriptors such as the string descriptor
* for the serial number.
*/
#define USB_CFG_DEVICE_CLASS 0
#define USB_CFG_DEVICE_SUBCLASS 0
/* See USB specification if you want to conform to an existing device class.
* Class 0xff is "vendor specific".
*/
#define USB_CFG_INTERFACE_CLASS 3 /* HID */
#define USB_CFG_INTERFACE_SUBCLASS 1 /* Boot */
#define USB_CFG_INTERFACE_PROTOCOL 1 /* Keyboard */
/* See USB specification if you want to conform to an existing device class or
* protocol. The following classes must be set at interface level:
* HID class is 3, no subclass and protocol required (but may be useful!)
* CDC class is 2, use subclass 2 and protocol 1 for ACM
*/
#define USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH 0
/* Define this to the length of the HID report descriptor, if you implement
* an HID device. Otherwise don't define it or define it to 0.
* If you use this define, you must add a PROGMEM character array named
* "usbHidReportDescriptor" to your code which contains the report descriptor.
* Don't forget to keep the array and this define in sync!
*/
/* #define USB_PUBLIC static */
/* Use the define above if you #include usbdrv.c instead of linking against it.
* This technique saves a couple of bytes in flash memory.
*/
/* ------------------- Fine Control over USB Descriptors ------------------- */
/* If you don't want to use the driver's default USB descriptors, you can
* provide our own. These can be provided as (1) fixed length static data in
* flash memory, (2) fixed length static data in RAM or (3) dynamically at
* runtime in the function usbFunctionDescriptor(). See usbdrv.h for more
* information about this function.
* Descriptor handling is configured through the descriptor's properties. If
* no properties are defined or if they are 0, the default descriptor is used.
* Possible properties are:
* + USB_PROP_IS_DYNAMIC: The data for the descriptor should be fetched
* at runtime via usbFunctionDescriptor(). If the usbMsgPtr mechanism is
* used, the data is in FLASH by default. Add property USB_PROP_IS_RAM if
* you want RAM pointers.
* + USB_PROP_IS_RAM: The data returned by usbFunctionDescriptor() or found
* in static memory is in RAM, not in flash memory.
* + USB_PROP_LENGTH(len): If the data is in static memory (RAM or flash),
* the driver must know the descriptor's length. The descriptor itself is
* found at the address of a well known identifier (see below).
* List of static descriptor names (must be declared PROGMEM if in flash):
* char usbDescriptorDevice[];
* char usbDescriptorConfiguration[];
* char usbDescriptorHidReport[];
* char usbDescriptorString0[];
* int usbDescriptorStringVendor[];
* int usbDescriptorStringDevice[];
* int usbDescriptorStringSerialNumber[];
* Other descriptors can't be provided statically, they must be provided
* dynamically at runtime.
*
* Descriptor properties are or-ed or added together, e.g.:
* #define USB_CFG_DESCR_PROPS_DEVICE (USB_PROP_IS_RAM | USB_PROP_LENGTH(18))
*
* The following descriptors are defined:
* USB_CFG_DESCR_PROPS_DEVICE
* USB_CFG_DESCR_PROPS_CONFIGURATION
* USB_CFG_DESCR_PROPS_STRINGS
* USB_CFG_DESCR_PROPS_STRING_0
* USB_CFG_DESCR_PROPS_STRING_VENDOR
* USB_CFG_DESCR_PROPS_STRING_PRODUCT
* USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
* USB_CFG_DESCR_PROPS_HID
* USB_CFG_DESCR_PROPS_HID_REPORT
* USB_CFG_DESCR_PROPS_UNKNOWN (for all descriptors not handled by the driver)
*
* Note about string descriptors: String descriptors are not just strings, they
* are Unicode strings prefixed with a 2 byte header. Example:
* int serialNumberDescriptor[] = {
* USB_STRING_DESCRIPTOR_HEADER(6),
* 'S', 'e', 'r', 'i', 'a', 'l'
* };
*/
#define USB_CFG_DESCR_PROPS_DEVICE 0
#define USB_CFG_DESCR_PROPS_CONFIGURATION USB_PROP_IS_DYNAMIC
//#define USB_CFG_DESCR_PROPS_CONFIGURATION 0
#define USB_CFG_DESCR_PROPS_STRINGS 0
#define USB_CFG_DESCR_PROPS_STRING_0 0
#define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
#define USB_CFG_DESCR_PROPS_HID USB_PROP_IS_DYNAMIC
//#define USB_CFG_DESCR_PROPS_HID 0
#define USB_CFG_DESCR_PROPS_HID_REPORT USB_PROP_IS_DYNAMIC
//#define USB_CFG_DESCR_PROPS_HID_REPORT 0
#define USB_CFG_DESCR_PROPS_UNKNOWN 0
#define usbMsgPtr_t unsigned short
/* If usbMsgPtr_t is not defined, it defaults to 'uchar *'. We define it to
* a scalar type here because gcc generates slightly shorter code for scalar
* arithmetics than for pointer arithmetics. Remove this define for backward
* type compatibility or define it to an 8 bit type if you use data in RAM only
* and all RAM is below 256 bytes (tiny memory model in IAR CC).
*/
/* ----------------------- Optional MCU Description ------------------------ */
/* The following configurations have working defaults in usbdrv.h. You
* usually don't need to set them explicitly. Only if you want to run
* the driver on a device which is not yet supported or with a compiler
* which is not fully supported (such as IAR C) or if you use a differnt
* interrupt than INT0, you may have to define some of these.
*/
/* #define USB_INTR_CFG MCUCR */
/* #define USB_INTR_CFG_SET ((1 << ISC00) | (1 << ISC01)) */
/* #define USB_INTR_CFG_CLR 0 */
/* #define USB_INTR_ENABLE GIMSK */
/* #define USB_INTR_ENABLE_BIT INT0 */
/* #define USB_INTR_PENDING GIFR */
/* #define USB_INTR_PENDING_BIT INTF0 */
/* #define USB_INTR_VECTOR INT0_vect */
/* Set INT1 for D- falling edge to count SOF */
/* #define USB_INTR_CFG EICRA */
#define USB_INTR_CFG_SET ((1 << ISC11) | (0 << ISC10))
/* #define USB_INTR_CFG_CLR 0 */
/* #define USB_INTR_ENABLE EIMSK */
#define USB_INTR_ENABLE_BIT INT1
/* #define USB_INTR_PENDING EIFR */
#define USB_INTR_PENDING_BIT INTF1
#define USB_INTR_VECTOR INT1_vect
#endif /* __usbconfig_h_included__ */

View file

@ -80,6 +80,14 @@ ifeq ($(strip $(SLEEP_LED_ENABLE)), yes)
TMK_COMMON_DEFS += -DNO_SUSPEND_POWER_DOWN TMK_COMMON_DEFS += -DNO_SUSPEND_POWER_DOWN
endif endif
ifeq ($(strip $(NO_UART)), yes)
TMK_COMMON_DEFS += -DNO_UART
endif
ifeq ($(strip $(NO_SUSPEND_POWER_DOWN)), yes)
TMK_COMMON_DEFS += -DNO_SUSPEND_POWER_DOWN
endif
ifeq ($(strip $(BACKLIGHT_ENABLE)), yes) ifeq ($(strip $(BACKLIGHT_ENABLE)), yes)
TMK_COMMON_SRC += $(COMMON_DIR)/backlight.c TMK_COMMON_SRC += $(COMMON_DIR)/backlight.c
TMK_COMMON_DEFS += -DBACKLIGHT_ENABLE TMK_COMMON_DEFS += -DBACKLIGHT_ENABLE

View file

@ -1,6 +1,7 @@
#include <stdint.h> #include <stdint.h>
#include <stdbool.h> #include <stdbool.h>
#include <avr/io.h> #include <avr/io.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h> #include <avr/interrupt.h>
#include <avr/wdt.h> #include <avr/wdt.h>
#include <util/delay.h> #include <util/delay.h>
@ -89,6 +90,12 @@ void bootloader_jump(void) {
_delay_ms(5); _delay_ms(5);
#endif #endif
#ifdef BOOTLOADHID_BOOTLOADER
// force bootloadHID to stay in bootloader mode, so that it waits
// for a new firmware to be flashed
eeprom_write_byte((uint8_t *)1, 0x00);
#endif
// watchdog reset // watchdog reset
reset_key = BOOTLOADER_RESET_KEY; reset_key = BOOTLOADER_RESET_KEY;
wdt_enable(WDTO_250MS); wdt_enable(WDTO_250MS);
@ -114,6 +121,11 @@ void bootloader_jump(void) {
#endif #endif
} }
#ifdef __AVR_ATmega32A__
// MCUSR is actually called MCUCSR in ATmega32A
#define MCUSR MCUCSR
#endif
/* this runs before main() */ /* this runs before main() */
void bootloader_jump_after_watchdog_reset(void) __attribute__ ((used, naked, section (".init3"))); void bootloader_jump_after_watchdog_reset(void) __attribute__ ((used, naked, section (".init3")));
void bootloader_jump_after_watchdog_reset(void) void bootloader_jump_after_watchdog_reset(void)

View file

@ -29,25 +29,35 @@ volatile uint32_t timer_count;
void timer_init(void) void timer_init(void)
{ {
// Timer0 CTC mode
TCCR0A = 0x02;
#if TIMER_PRESCALER == 1 #if TIMER_PRESCALER == 1
TCCR0B = 0x01; uint8_t prescaler = 0x01;
#elif TIMER_PRESCALER == 8 #elif TIMER_PRESCALER == 8
TCCR0B = 0x02; uint8_t prescaler = 0x02;
#elif TIMER_PRESCALER == 64 #elif TIMER_PRESCALER == 64
TCCR0B = 0x03; uint8_t prescaler = 0x03;
#elif TIMER_PRESCALER == 256 #elif TIMER_PRESCALER == 256
TCCR0B = 0x04; uint8_t prescaler = 0x04;
#elif TIMER_PRESCALER == 1024 #elif TIMER_PRESCALER == 1024
TCCR0B = 0x05; uint8_t prescaler = 0x05;
#else #else
# error "Timer prescaler value is NOT vaild." # error "Timer prescaler value is NOT vaild."
#endif #endif
#ifndef __AVR_ATmega32A__
// Timer0 CTC mode
TCCR0A = 0x02;
TCCR0B = prescaler;
OCR0A = TIMER_RAW_TOP; OCR0A = TIMER_RAW_TOP;
TIMSK0 = (1<<OCIE0A); TIMSK0 = (1<<OCIE0A);
#else
// Timer0 CTC mode
TCCR0 = (1 << WGM01) | prescaler;
OCR0 = TIMER_RAW_TOP;
TIMSK = (1 << OCIE0);
#endif
} }
inline inline
@ -107,7 +117,12 @@ uint32_t timer_elapsed32(uint32_t last)
} }
// excecuted once per 1ms.(excess for just timer count?) // excecuted once per 1ms.(excess for just timer count?)
ISR(TIMER0_COMPA_vect) #ifndef __AVR_ATmega32A__
#define TIMER_INTERRUPT_VECTOR TIMER0_COMPA_vect
#else
#define TIMER_INTERRUPT_VECTOR TIMER0_COMP_vect
#endif
ISR(TIMER_INTERRUPT_VECTOR, ISR_NOBLOCK)
{ {
timer_count++; timer_count++;
} }

View file

@ -235,8 +235,11 @@ static void print_status(void)
print("\n\t- Status -\n"); print("\n\t- Status -\n");
print_val_hex8(host_keyboard_leds()); print_val_hex8(host_keyboard_leds());
#ifndef PROTOCOL_VUSB
// these aren't set on the V-USB protocol, so we just ignore them for now
print_val_hex8(keyboard_protocol); print_val_hex8(keyboard_protocol);
print_val_hex8(keyboard_idle); print_val_hex8(keyboard_idle);
#endif
#ifdef NKRO_ENABLE #ifdef NKRO_ENABLE
print_val_hex8(keymap_config.nkro); print_val_hex8(keymap_config.nkro);
#endif #endif

View file

@ -18,4 +18,5 @@ endif
# Search Path # Search Path
VPATH += $(TMK_DIR)/protocol/vusb:$(TMK_DIR)/protocol/vusb/usbdrv VPATH += $(TMK_PATH)/$(VUSB_DIR)
VPATH += $(TMK_PATH)/$(VUSB_DIR)/usbdrv

View file

@ -48,8 +48,12 @@ int main(void)
uint16_t last_timer = timer_read(); uint16_t last_timer = timer_read();
#endif #endif
#ifdef CLKPR
// avoid unintentional changes of clock frequency in devices that have a
// clock prescaler
CLKPR = 0x80, CLKPR = 0; CLKPR = 0x80, CLKPR = 0;
#ifndef PS2_USE_USART #endif
#ifndef NO_UART
uart_init(UART_BAUD_RATE); uart_init(UART_BAUD_RATE);
#endif #endif

View file

@ -15,6 +15,8 @@ You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ */
#include <avr/eeprom.h>
#include <avr/wdt.h>
#include <stdint.h> #include <stdint.h>
#include "usbdrv.h" #include "usbdrv.h"
#include "usbconfig.h" #include "usbconfig.h"
@ -24,6 +26,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "debug.h" #include "debug.h"
#include "host_driver.h" #include "host_driver.h"
#include "vusb.h" #include "vusb.h"
#include "bootloader.h"
static uint8_t vusb_keyboard_leds = 0; static uint8_t vusb_keyboard_leds = 0;
@ -163,6 +166,7 @@ static struct {
uint16_t len; uint16_t len;
enum { enum {
NONE, NONE,
BOOTLOADER,
SET_LED SET_LED
} kind; } kind;
} last_req; } last_req;
@ -193,6 +197,11 @@ usbRequest_t *rq = (void *)data;
debug("SET_LED: "); debug("SET_LED: ");
last_req.kind = SET_LED; last_req.kind = SET_LED;
last_req.len = rq->wLength.word; last_req.len = rq->wLength.word;
#ifdef BOOTLOADER_SIZE
} else if(rq->wValue.word == 0x0301) {
last_req.kind = BOOTLOADER;
last_req.len = rq->wLength.word;
#endif
} }
return USB_NO_MSG; // to get data in usbFunctionWrite return USB_NO_MSG; // to get data in usbFunctionWrite
} else { } else {
@ -220,6 +229,11 @@ uchar usbFunctionWrite(uchar *data, uchar len)
last_req.len = 0; last_req.len = 0;
return 1; return 1;
break; break;
case BOOTLOADER:
usbDeviceDisconnect();
bootloader_jump();
return 1;
break;
case NONE: case NONE:
default: default:
return -1; return -1;
@ -266,7 +280,7 @@ const PROGMEM uchar keyboard_hid_report[] = {
0x95, 0x06, // Report Count (6), 0x95, 0x06, // Report Count (6),
0x75, 0x08, // Report Size (8), 0x75, 0x08, // Report Size (8),
0x15, 0x00, // Logical Minimum (0), 0x15, 0x00, // Logical Minimum (0),
0x25, 0xFF, 0x00 // Logical Maximum(255), 0x25, 0xFF, 0x00, // Logical Maximum(255),
0x05, 0x07, // Usage Page (Key Codes), 0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x00, // Usage Minimum (0), 0x19, 0x00, // Usage Minimum (0),
0x29, 0xFF, // Usage Maximum (255), 0x29, 0xFF, // Usage Maximum (255),
@ -336,7 +350,7 @@ const PROGMEM uchar mouse_hid_report[] = {
0xa1, 0x01, // COLLECTION (Application) 0xa1, 0x01, // COLLECTION (Application)
0x85, REPORT_ID_SYSTEM, // REPORT_ID (2) 0x85, REPORT_ID_SYSTEM, // REPORT_ID (2)
0x15, 0x01, // LOGICAL_MINIMUM (0x1) 0x15, 0x01, // LOGICAL_MINIMUM (0x1)
0x25, 0xb7, 0x00 // LOGICAL_MAXIMUM (0xb7) 0x25, 0xb7, 0x00, // LOGICAL_MAXIMUM (0xb7)
0x19, 0x01, // USAGE_MINIMUM (0x1) 0x19, 0x01, // USAGE_MINIMUM (0x1)
0x29, 0xb7, // USAGE_MAXIMUM (0xb7) 0x29, 0xb7, // USAGE_MAXIMUM (0xb7)
0x75, 0x10, // REPORT_SIZE (16) 0x75, 0x10, // REPORT_SIZE (16)
@ -481,11 +495,11 @@ USB_PUBLIC usbMsgLen_t usbFunctionDescriptor(struct usbRequest *rq)
/* interface index */ /* interface index */
switch (rq->wIndex.word) { switch (rq->wIndex.word) {
case 0: case 0:
usbMsgPtr = keyboard_hid_report; usbMsgPtr = (unsigned char *)keyboard_hid_report;
len = sizeof(keyboard_hid_report); len = sizeof(keyboard_hid_report);
break; break;
case 1: case 1:
usbMsgPtr = mouse_hid_report; usbMsgPtr = (unsigned char *)mouse_hid_report;
len = sizeof(mouse_hid_report); len = sizeof(mouse_hid_report);
break; break;
} }