/* Note for ErgoDox EZ customizers: Here be dragons! This is not a file you want to be messing with. All of the interesting stuff for you is under keymaps/ :) Love, Erez Copyright 2013 Oleg Kostyuk <cub.uanic@gmail.com> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "matrix.h" #include <stdint.h> #include <stdbool.h> #include <avr/io.h> #include "wait.h" #include "action_layer.h" #include "print.h" #include "debug.h" #include "util.h" #include "keymap_steno.h" #include QMK_KEYBOARD_H #ifdef DEBUG_MATRIX_SCAN_RATE #include "timer.h" #endif #ifndef DEBOUNCE # define DEBOUNCE 5 #endif // MCP Pin Defs #define RROW1 (1<<3) #define RROW2 (1<<2) #define RROW3 (1<<1) #define RROW4 (1<<0) #define COL0 (1<<0) #define COL1 (1<<1) #define COL2 (1<<2) #define COL3 (1<<3) #define COL4 (1<<4) #define COL5 (1<<5) #define COL6 (1<<6) // ATmega pin defs #define ROW1 (1<<6) #define ROW2 (1<<5) #define ROW3 (1<<4) #define ROW4 (1<<1) #define COL7 (1<<0) #define COL8 (1<<1) #define COL9 (1<<2) #define COL10 (1<<3) #define COL11 (1<<2) #define COL12 (1<<3) #define COL13 (1<<6) // bit masks #define BMASK (COL7 | COL8 | COL9 | COL10) #define CMASK (COL13) #define DMASK (COL11 | COL12) #define FMASK (ROW1 | ROW2 | ROW3 | ROW4) #define RROWMASK (RROW1 | RROW2 | RROW3 | RROW4) #define MCPMASK (COL0 | COL1 | COL2 | COL3 | COL4 | COL5 | COL6) /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; /* * matrix state(1:on, 0:off) * contains the raw values without debounce filtering of the last read cycle. */ static matrix_row_t raw_matrix[MATRIX_ROWS]; // Debouncing: store for each key the number of scans until it's eligible to // change. When scanning the matrix, ignore any changes in keys that have // already changed in the last DEBOUNCE scans. static uint8_t debounce_matrix[MATRIX_ROWS * MATRIX_COLS]; static matrix_row_t read_cols(uint8_t row); static void init_cols(void); static void unselect_rows(void); static void select_row(uint8_t row); static uint8_t mcp23018_reset_loop; // static uint16_t mcp23018_reset_loop; #ifdef DEBUG_MATRIX_SCAN_RATE uint32_t matrix_timer; uint32_t matrix_scan_count; #endif __attribute__ ((weak)) void matrix_init_user(void) {} __attribute__ ((weak)) void matrix_scan_user(void) {} __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } void matrix_init(void) { // initialize row and col mcp23018_status = init_mcp23018(); unselect_rows(); init_cols(); // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { matrix[i] = 0; raw_matrix[i] = 0; for (uint8_t j=0; j < MATRIX_COLS; ++j) { debounce_matrix[i * MATRIX_COLS + j] = 0; } } #ifdef DEBUG_MATRIX_SCAN_RATE matrix_timer = timer_read32(); matrix_scan_count = 0; #endif matrix_init_quantum(); } void matrix_power_up(void) { mcp23018_status = init_mcp23018(); unselect_rows(); init_cols(); // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { matrix[i] = 0; } #ifdef DEBUG_MATRIX_SCAN_RATE matrix_timer = timer_read32(); matrix_scan_count = 0; #endif } // Returns a matrix_row_t whose bits are set if the corresponding key should be // eligible to change in this scan. matrix_row_t debounce_mask(matrix_row_t rawcols, uint8_t row) { matrix_row_t result = 0; matrix_row_t change = rawcols ^ raw_matrix[row]; raw_matrix[row] = rawcols; for (uint8_t i = 0; i < MATRIX_COLS; ++i) { if (debounce_matrix[row * MATRIX_COLS + i]) { --debounce_matrix[row * MATRIX_COLS + i]; } else { result |= (1 << i); } if (change & (1 << i)) { debounce_matrix[row * MATRIX_COLS + i] = DEBOUNCE; } } return result; } matrix_row_t debounce_read_cols(uint8_t row) { // Read the row without debouncing filtering and store it for later usage. matrix_row_t cols = read_cols(row); // Get the Debounce mask. matrix_row_t mask = debounce_mask(cols, row); // debounce the row and return the result. return (cols & mask) | (matrix[row] & ~mask);; } uint8_t matrix_scan(void) { // Then the keyboard if (mcp23018_status) { // if there was an error if (++mcp23018_reset_loop == 0) { // if (++mcp23018_reset_loop >= 1300) { // since mcp23018_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans // this will be approx bit more frequent than once per second print("trying to reset mcp23018\n"); mcp23018_status = init_mcp23018(); if (mcp23018_status) { print("left side not responding\n"); } else { print("left side attached\n"); } } } #ifdef DEBUG_MATRIX_SCAN_RATE matrix_scan_count++; uint32_t timer_now = timer_read32(); if (TIMER_DIFF_32(timer_now, matrix_timer)>1000) { print("matrix scan frequency: "); pdec(matrix_scan_count); print("\n"); matrix_timer = timer_now; matrix_scan_count = 0; } #endif for (uint8_t i = 0; i < MATRIX_ROWS_PER_SIDE; i++) { select_row(i); // and select on left hand select_row(i + MATRIX_ROWS_PER_SIDE); // we don't need a 30us delay anymore, because selecting a // left-hand row requires more than 30us for i2c. // grab cols from left hand matrix[i] = debounce_read_cols(i); // grab cols from right hand matrix[i + MATRIX_ROWS_PER_SIDE] = debounce_read_cols(i + MATRIX_ROWS_PER_SIDE); unselect_rows(); } matrix_scan_quantum(); #ifdef DEBUG_MATRIX for (uint8_t c = 0; c < MATRIX_COLS; c++) for (uint8_t r = 0; r < MATRIX_ROWS; r++) if (matrix_is_on(r, c)) xprintf("r:%d c:%d \n", r, c); #endif return 1; } bool matrix_is_modified(void) // deprecated and evidently not called. { return true; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1<<col)); } inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; } void matrix_print(void) { print("\nr/c 0123456789ABCDEF\n"); for (uint8_t row = 0; row < MATRIX_ROWS; row++) { phex(row); print(": "); pbin_reverse16(matrix_get_row(row)); print("\n"); } } uint8_t matrix_key_count(void) { uint8_t count = 0; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { count += bitpop16(matrix[i]); } return count; } // Remember this means ROWS static void init_cols(void) { // init on mcp23018 // not needed, already done as part of init_mcp23018() // Input with pull-up(DDR:0, PORT:1) DDRF &= ~FMASK; PORTF |= FMASK; } static matrix_row_t read_cols(uint8_t row) { if (row < 7) { if (mcp23018_status) { // if there was an error return 0; } else { uint8_t data = 0; mcp23018_status = i2c_start(I2C_ADDR_WRITE, ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out; mcp23018_status = i2c_write(GPIOB, ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out; mcp23018_status = i2c_start(I2C_ADDR_READ, ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out; mcp23018_status = i2c_read_nack(ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status < 0) goto out; data = ~((uint8_t)mcp23018_status); mcp23018_status = I2C_STATUS_SUCCESS; out: i2c_stop(); #ifdef DEBUG_MATRIX if (data != 0x00) xprintf("I2C: %d\n", data); #endif return data; } } else { /* read from teensy * bitmask is 0b0111001, but we want the lower four * we'll return 1s for the top two, but that's harmless. */ // So I need to confuckulate all this //return ~(((PIND & DMASK) >> 1 | ((PINC & CMASK) >> 6) | (PIN))); //return ~((PINF & 0x03) | ((PINF & 0xF0) >> 2)); return ~( (((PINF & ROW4) >> 1) | ((PINF & (ROW1 | ROW2 | ROW3)) >> 3)) & 0xF); } } // Row pin configuration static void unselect_rows(void) { // no need to unselect on mcp23018, because the select step sets all // the other row bits high, and it's not changing to a different // direction // Hi-Z(DDR:0, PORT:0) to unselect DDRB &= ~(BMASK); PORTB &= ~(BMASK); DDRC &= ~CMASK; PORTC &= ~CMASK; DDRD &= ~DMASK; PORTD &= ~DMASK; } static void select_row(uint8_t row) { if (row < 7) { // select on mcp23018 if (mcp23018_status) { // do nothing on error } else { // set active row low : 0 // set other rows hi-Z : 1 mcp23018_status = i2c_start(I2C_ADDR_WRITE, ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out; mcp23018_status = i2c_write(GPIOA, ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out; mcp23018_status = i2c_write(0xFF & ~(1<<row), ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out; out: i2c_stop(); } } else { // Output low(DDR:1, PORT:0) to select switch (row) { case 7: DDRB |= COL7; PORTB &= ~COL7; break; case 8: DDRB |= COL8; PORTB &= ~COL8; break; case 9: DDRB |= COL9; PORTB &= ~COL9; break; case 10: DDRB |= COL10; PORTB &= ~COL10; break; case 11: DDRD |= COL11; PORTD &= ~COL11; break; case 12: DDRD |= COL12; PORTD &= ~COL12; break; case 13: DDRC |= COL13; PORTC &= ~COL13; break; } } }