/* Copyright 2012 Jun Wako <wakojun@gmail.com> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * scan matrix */ #include <stdint.h> #include <stdbool.h> #include <avr/io.h> #include "wait.h" #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" #include "split_util.h" #include "pro_micro.h" #include "config.h" #include "timer.h" #include "split_flags.h" #ifdef RGBLIGHT_ENABLE # include "rgblight.h" #endif #ifdef BACKLIGHT_ENABLE # include "backlight.h" extern backlight_config_t backlight_config; #endif #if defined(USE_I2C) || defined(EH) # include "i2c.h" #else // USE_SERIAL # include "serial.h" #endif #ifndef DEBOUNCING_DELAY # define DEBOUNCING_DELAY 5 #endif #if (DEBOUNCING_DELAY > 0) static uint16_t debouncing_time; static bool debouncing = false; #endif #if (MATRIX_COLS <= 8) # define print_matrix_header() print("\nr/c 01234567\n") # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row)) # define matrix_bitpop(i) bitpop(matrix[i]) # define ROW_SHIFTER ((uint8_t)1) #else # error "Currently only supports 8 COLS" #endif static matrix_row_t matrix_debouncing[MATRIX_ROWS]; #define ERROR_DISCONNECT_COUNT 5 #define ROWS_PER_HAND (MATRIX_ROWS/2) static uint8_t error_count = 0; static uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; static uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS; /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; static matrix_row_t matrix_debouncing[MATRIX_ROWS]; #if (DIODE_DIRECTION == COL2ROW) static void init_cols(void); static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row); static void unselect_rows(void); static void select_row(uint8_t row); static void unselect_row(uint8_t row); #elif (DIODE_DIRECTION == ROW2COL) static void init_rows(void); static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col); static void unselect_cols(void); static void unselect_col(uint8_t col); static void select_col(uint8_t col); #endif __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__ ((weak)) void matrix_init_user(void) { } __attribute__ ((weak)) void matrix_scan_user(void) { } __attribute__ ((weak)) void matrix_slave_scan_user(void) { } inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } void matrix_init(void) { #ifdef DISABLE_JTAG // JTAG disable for PORT F. write JTD bit twice within four cycles. MCUCR |= (1<<JTD); MCUCR |= (1<<JTD); #endif debug_enable = true; debug_matrix = true; debug_mouse = true; // Set pinout for right half if pinout for that half is defined if (!isLeftHand) { #ifdef MATRIX_ROW_PINS_RIGHT const uint8_t row_pins_right[MATRIX_ROWS] = MATRIX_ROW_PINS_RIGHT; for (uint8_t i = 0; i < MATRIX_ROWS; i++) row_pins[i] = row_pins_right[i]; #endif #ifdef MATRIX_COL_PINS_RIGHT const uint8_t col_pins_right[MATRIX_COLS] = MATRIX_COL_PINS_RIGHT; for (uint8_t i = 0; i < MATRIX_COLS; i++) col_pins[i] = col_pins_right[i]; #endif } // initialize row and col #if (DIODE_DIRECTION == COL2ROW) unselect_rows(); init_cols(); #elif (DIODE_DIRECTION == ROW2COL) unselect_cols(); init_rows(); #endif // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { matrix[i] = 0; matrix_debouncing[i] = 0; } matrix_init_quantum(); } uint8_t _matrix_scan(void) { int offset = isLeftHand ? 0 : (ROWS_PER_HAND); #if (DIODE_DIRECTION == COL2ROW) // Set row, read cols for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) { # if (DEBOUNCING_DELAY > 0) bool matrix_changed = read_cols_on_row(matrix_debouncing+offset, current_row); if (matrix_changed) { debouncing = true; debouncing_time = timer_read(); } # else read_cols_on_row(matrix+offset, current_row); # endif } #elif (DIODE_DIRECTION == ROW2COL) // Set col, read rows for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) { # if (DEBOUNCING_DELAY > 0) bool matrix_changed = read_rows_on_col(matrix_debouncing+offset, current_col); if (matrix_changed) { debouncing = true; debouncing_time = timer_read(); } # else read_rows_on_col(matrix+offset, current_col); # endif } #endif # if (DEBOUNCING_DELAY > 0) if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) { for (uint8_t i = 0; i < ROWS_PER_HAND; i++) { matrix[i+offset] = matrix_debouncing[i+offset]; } debouncing = false; } # endif return 1; } #if defined(USE_I2C) || defined(EH) // Get rows from other half over i2c int i2c_transaction(void) { int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; int err = 0; // write backlight info #ifdef BACKLIGHT_ENABLE if (BACKLIT_DIRTY) { err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE); if (err) goto i2c_error; // Backlight location err = i2c_master_write(I2C_BACKLIT_START); if (err) goto i2c_error; // Write backlight i2c_master_write(get_backlight_level()); BACKLIT_DIRTY = false; } #endif err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE); if (err) goto i2c_error; // start of matrix stored at I2C_KEYMAP_START err = i2c_master_write(I2C_KEYMAP_START); if (err) goto i2c_error; // Start read err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ); if (err) goto i2c_error; if (!err) { int i; for (i = 0; i < ROWS_PER_HAND-1; ++i) { matrix[slaveOffset+i] = i2c_master_read(I2C_ACK); } matrix[slaveOffset+i] = i2c_master_read(I2C_NACK); i2c_master_stop(); } else { i2c_error: // the cable is disconnceted, or something else went wrong i2c_reset_state(); return err; } #ifdef RGBLIGHT_ENABLE if (RGB_DIRTY) { err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE); if (err) goto i2c_error; // RGB Location err = i2c_master_write(I2C_RGB_START); if (err) goto i2c_error; uint32_t dword = eeconfig_read_rgblight(); // Write RGB err = i2c_master_write_data(&dword, 4); if (err) goto i2c_error; RGB_DIRTY = false; i2c_master_stop(); } #endif return 0; } #else // USE_SERIAL int serial_transaction(void) { int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; if (serial_update_buffers()) { return 1; } for (int i = 0; i < ROWS_PER_HAND; ++i) { matrix[slaveOffset+i] = serial_slave_buffer[i]; } #ifdef RGBLIGHT_ENABLE // Code to send RGB over serial goes here (not implemented yet) #endif #ifdef BACKLIGHT_ENABLE // Write backlight level for slave to read serial_master_buffer[SERIAL_BACKLIT_START] = backlight_config.enable ? backlight_config.level : 0; #endif return 0; } #endif uint8_t matrix_scan(void) { uint8_t ret = _matrix_scan(); #if defined(USE_I2C) || defined(EH) if( i2c_transaction() ) { #else // USE_SERIAL if( serial_transaction() ) { #endif error_count++; if (error_count > ERROR_DISCONNECT_COUNT) { // reset other half if disconnected int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; for (int i = 0; i < ROWS_PER_HAND; ++i) { matrix[slaveOffset+i] = 0; } } } else { error_count = 0; } matrix_scan_quantum(); return ret; } void matrix_slave_scan(void) { _matrix_scan(); int offset = (isLeftHand) ? 0 : ROWS_PER_HAND; #if defined(USE_I2C) || defined(EH) for (int i = 0; i < ROWS_PER_HAND; ++i) { i2c_slave_buffer[I2C_KEYMAP_START+i] = matrix[offset+i]; } #else // USE_SERIAL for (int i = 0; i < ROWS_PER_HAND; ++i) { serial_slave_buffer[i] = matrix[offset+i]; } #endif matrix_slave_scan_user(); } bool matrix_is_modified(void) { if (debouncing) return false; return true; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1<<col)); } inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; } void matrix_print(void) { print("\nr/c 0123456789ABCDEF\n"); for (uint8_t row = 0; row < MATRIX_ROWS; row++) { phex(row); print(": "); pbin_reverse16(matrix_get_row(row)); print("\n"); } } uint8_t matrix_key_count(void) { uint8_t count = 0; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { count += bitpop16(matrix[i]); } return count; } #if (DIODE_DIRECTION == COL2ROW) static void init_cols(void) { for(uint8_t x = 0; x < MATRIX_COLS; x++) { uint8_t pin = col_pins[x]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI } } static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) { // Store last value of row prior to reading matrix_row_t last_row_value = current_matrix[current_row]; // Clear data in matrix row current_matrix[current_row] = 0; // Select row and wait for row selecton to stabilize select_row(current_row); wait_us(30); // For each col... for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) { // Select the col pin to read (active low) uint8_t pin = col_pins[col_index]; uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF)); // Populate the matrix row with the state of the col pin current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index); } // Unselect row unselect_row(current_row); return (last_row_value != current_matrix[current_row]); } static void select_row(uint8_t row) { uint8_t pin = row_pins[row]; _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW } static void unselect_row(uint8_t row) { uint8_t pin = row_pins[row]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI } static void unselect_rows(void) { for(uint8_t x = 0; x < ROWS_PER_HAND; x++) { uint8_t pin = row_pins[x]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI } } #elif (DIODE_DIRECTION == ROW2COL) static void init_rows(void) { for(uint8_t x = 0; x < ROWS_PER_HAND; x++) { uint8_t pin = row_pins[x]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI } } static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) { bool matrix_changed = false; // Select col and wait for col selecton to stabilize select_col(current_col); wait_us(30); // For each row... for(uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++) { // Store last value of row prior to reading matrix_row_t last_row_value = current_matrix[row_index]; // Check row pin state if ((_SFR_IO8(row_pins[row_index] >> 4) & _BV(row_pins[row_index] & 0xF)) == 0) { // Pin LO, set col bit current_matrix[row_index] |= (ROW_SHIFTER << current_col); } else { // Pin HI, clear col bit current_matrix[row_index] &= ~(ROW_SHIFTER << current_col); } // Determine if the matrix changed state if ((last_row_value != current_matrix[row_index]) && !(matrix_changed)) { matrix_changed = true; } } // Unselect col unselect_col(current_col); return matrix_changed; } static void select_col(uint8_t col) { uint8_t pin = col_pins[col]; _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW } static void unselect_col(uint8_t col) { uint8_t pin = col_pins[col]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI } static void unselect_cols(void) { for(uint8_t x = 0; x < MATRIX_COLS; x++) { uint8_t pin = col_pins[x]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI } } #endif