/* Copyright 2017-2019 Mathias Andersson <wraul@dbox.se> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <stdint.h> #include <stdbool.h> #include "wait.h" #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" #include "debounce.h" #include "quantum.h" #if (MATRIX_COLS <= 8) # define print_matrix_header() print("\nr/c 01234567\n") # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row)) # define matrix_bitpop(i) bitpop(matrix[i]) # define ROW_SHIFTER ((uint8_t)1) #elif (MATRIX_COLS <= 16) # define print_matrix_header() print("\nr/c 0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row)) # define matrix_bitpop(i) bitpop16(matrix[i]) # define ROW_SHIFTER ((uint16_t)1) #elif (MATRIX_COLS <= 32) # define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row)) # define matrix_bitpop(i) bitpop32(matrix[i]) # define ROW_SHIFTER ((uint32_t)1) #endif static const pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; static const pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS; /* matrix state(1:on, 0:off) */ static matrix_row_t raw_matrix[MATRIX_ROWS]; // raw values static matrix_row_t matrix[MATRIX_ROWS]; // debounced values __attribute__((weak)) void matrix_init_quantum(void) { matrix_init_kb(); } __attribute__((weak)) void matrix_scan_quantum(void) { matrix_scan_kb(); } __attribute__((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__((weak)) void matrix_init_user(void) {} __attribute__((weak)) void matrix_scan_user(void) {} inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1 << col)); } inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; } void matrix_print(void) { print_matrix_header(); for (uint8_t row = 0; row < MATRIX_ROWS; row++) { phex(row); print(": "); print_matrix_row(row); print("\n"); } } uint8_t matrix_key_count(void) { uint8_t count = 0; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { count += matrix_bitpop(i); } return count; } /* Columns 0 - 15 * These columns uses two 74HC237D 3 to 8 bit demultiplexers. * col / pin: PB6 PC6 PC7 PF1 PF0 * 0: 0 1 0 0 0 * 1: 0 1 0 0 1 * 2: 0 1 0 1 0 * 3: 0 1 0 1 1 * 4: 0 1 1 0 0 * 5: 0 1 1 0 1 * 6: 0 1 1 1 0 * 7: 0 1 1 1 1 * 8: 1 0 0 0 0 * 9: 1 0 0 0 1 * 10: 1 0 0 1 0 * 11: 1 0 0 1 1 * 12: 1 0 1 0 0 * 13: 1 0 1 0 1 * 14: 1 0 1 1 0 * 15: 1 0 1 1 1 * * col: 16 * pin: PB5 */ static void unselect_cols(void) { for (uint8_t x = 0; x < 6; x++) { setPinOutput(col_pins[x]); writePinLow(col_pins[x]); } } static void select_col(uint8_t col) { if (col < 16) { uint8_t c = col + 8; writePin(B6, c & 0b10000); writePin(C6, c & 0b01000); writePin(C7, c & 0b00100); writePin(F1, c & 0b00010); writePin(F0, c & 0b00001); } else { writePinHigh(B5); } } /* Row pin configuration * row: 0 1 2 3 4 5 * pin: D0 D1 D2 D3 D5 B7 * * Caps lock uses its own pin E2 */ static void init_pins(void) { unselect_cols(); for (uint8_t x = 0; x < MATRIX_ROWS; x++) { setPinInputHigh(row_pins[x]); } setPinInputHigh(E2); } static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) { bool matrix_changed = false; // Select col and wait for col selecton to stabilize select_col(current_col); wait_us(30); // For each row... for (uint8_t row_index = 0; row_index < MATRIX_ROWS; row_index++) { // Store last value of row prior to reading matrix_row_t last_row_value = current_matrix[row_index]; // Check row pin state // Use the otherwise unused row: 3, col: 0 for caps lock if (row_index == 3 && current_col == 0) { if (readPin(E2) == 0) { // Pin LO, set col bit current_matrix[row_index] |= (ROW_SHIFTER << current_col); } else { // Pin HI, clear col bit current_matrix[row_index] &= ~(ROW_SHIFTER << current_col); } } else { if (readPin(row_pins[row_index]) == 0) { // Pin HI, clear col bit current_matrix[row_index] &= ~(ROW_SHIFTER << current_col); } else { // Pin LO, set col bit current_matrix[row_index] |= (ROW_SHIFTER << current_col); } } // Determine if the matrix changed state if ((last_row_value != current_matrix[row_index]) && !(matrix_changed)) { matrix_changed = true; } } // Unselect cols unselect_cols(); return matrix_changed; } void matrix_init(void) { // initialize key pins init_pins(); // initialize matrix state: all keys off for (uint8_t i = 0; i < MATRIX_ROWS; i++) { raw_matrix[i] = 0; matrix[i] = 0; } debounce_init(MATRIX_ROWS); matrix_init_quantum(); } uint8_t matrix_scan(void) { bool changed = false; for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) { changed |= read_rows_on_col(raw_matrix, current_col); } debounce(raw_matrix, matrix, MATRIX_ROWS, changed); matrix_scan_quantum(); return (uint8_t)changed; }