/* Note for ErgoDox EZ customizers: Here be dragons! This is not a file you want to be messing with. All of the interesting stuff for you is under keymaps/ :) Love, Erez Copyright 2013 Oleg Kostyuk <cub.uanic@gmail.com> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * scan matrix */ #include <stdint.h> #include <stdbool.h> #include <avr/io.h> #include "wait.h" #include "action_layer.h" #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" #include "ez.h" #include "i2cmaster.h" #ifdef DEBUG_MATRIX_SCAN_RATE #include "timer.h" #endif /* * This constant define not debouncing time in msecs, but amount of matrix * scan loops which should be made to get stable debounced results. * * On Ergodox matrix scan rate is relatively low, because of slow I2C. * Now it's only 317 scans/second, or about 3.15 msec/scan. * According to Cherry specs, debouncing time is 5 msec. * * And so, there is no sense to have DEBOUNCE higher than 2. */ #ifndef DEBOUNCE # define DEBOUNCE 5 #endif static uint8_t debouncing = DEBOUNCE; /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; static matrix_row_t matrix_debouncing[MATRIX_ROWS]; static matrix_row_t read_cols(uint8_t row); static void init_cols(void); static void unselect_rows(void); static void select_row(uint8_t row); static uint8_t mcp23018_reset_loop; #ifdef DEBUG_MATRIX_SCAN_RATE uint32_t matrix_timer; uint32_t matrix_scan_count; #endif __attribute__ ((weak)) void matrix_init_user(void) {} __attribute__ ((weak)) void matrix_scan_user(void) {} __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } void matrix_init(void) { // initialize row and col mcp23018_status = init_mcp23018(); unselect_rows(); init_cols(); // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { matrix[i] = 0; matrix_debouncing[i] = 0; } #ifdef DEBUG_MATRIX_SCAN_RATE matrix_timer = timer_read32(); matrix_scan_count = 0; #endif matrix_init_quantum(); } void matrix_power_up(void) { mcp23018_status = init_mcp23018(); unselect_rows(); init_cols(); // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { matrix[i] = 0; matrix_debouncing[i] = 0; } #ifdef DEBUG_MATRIX_SCAN_RATE matrix_timer = timer_read32(); matrix_scan_count = 0; #endif } uint8_t matrix_scan(void) { if (mcp23018_status) { // if there was an error if (++mcp23018_reset_loop == 0) { // since mcp23018_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans // this will be approx bit more frequent than once per second print("trying to reset mcp23018\n"); mcp23018_status = init_mcp23018(); if (mcp23018_status) { print("left side not responding\n"); } else { print("left side attached\n"); ergodox_blink_all_leds(); } } } #ifdef DEBUG_MATRIX_SCAN_RATE matrix_scan_count++; uint32_t timer_now = timer_read32(); if (TIMER_DIFF_32(timer_now, matrix_timer)>1000) { print("matrix scan frequency: "); pdec(matrix_scan_count); print("\n"); matrix_timer = timer_now; matrix_scan_count = 0; } #endif for (uint8_t i = 0; i < MATRIX_ROWS; i++) { select_row(i); wait_us(30); // without this wait read unstable value. matrix_row_t cols = read_cols(i); if (matrix_debouncing[i] != cols) { matrix_debouncing[i] = cols; if (debouncing) { debug("bounce!: "); debug_hex(debouncing); debug("\n"); } debouncing = DEBOUNCE; } unselect_rows(); } if (debouncing) { if (--debouncing) { wait_us(1); // this should be wait_ms(1) but has been left as-is at EZ's request } else { for (uint8_t i = 0; i < MATRIX_ROWS; i++) { matrix[i] = matrix_debouncing[i]; } } } matrix_scan_quantum(); return 1; } bool matrix_is_modified(void) { if (debouncing) return false; return true; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1<<col)); } inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; } void matrix_print(void) { print("\nr/c 0123456789ABCDEF\n"); for (uint8_t row = 0; row < MATRIX_ROWS; row++) { phex(row); print(": "); pbin_reverse16(matrix_get_row(row)); print("\n"); } } uint8_t matrix_key_count(void) { uint8_t count = 0; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { count += bitpop16(matrix[i]); } return count; } /* Column pin configuration * * Teensy * col: 0 1 2 3 4 5 * pin: F0 F1 F4 F5 F6 F7 * * MCP23018 * col: 0 1 2 3 4 5 * pin: B5 B4 B3 B2 B1 B0 */ static void init_cols(void) { // init on mcp23018 // not needed, already done as part of init_mcp23018() // init on teensy // Input with pull-up(DDR:0, PORT:1) DDRF &= ~(1<<7 | 1<<6 | 1<<5 | 1<<4 | 1<<1 | 1<<0); PORTF |= (1<<7 | 1<<6 | 1<<5 | 1<<4 | 1<<1 | 1<<0); } static matrix_row_t read_cols(uint8_t row) { if (row < 7) { if (mcp23018_status) { // if there was an error return 0; } else { uint8_t data = 0; mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out; mcp23018_status = i2c_write(GPIOB); if (mcp23018_status) goto out; mcp23018_status = i2c_start(I2C_ADDR_READ); if (mcp23018_status) goto out; data = i2c_readNak(); data = ~data; out: i2c_stop(); return data; } } else { // read from teensy return (PINF&(1<<0) ? 0 : (1<<0)) | (PINF&(1<<1) ? 0 : (1<<1)) | (PINF&(1<<4) ? 0 : (1<<2)) | (PINF&(1<<5) ? 0 : (1<<3)) | (PINF&(1<<6) ? 0 : (1<<4)) | (PINF&(1<<7) ? 0 : (1<<5)) ; } } /* Row pin configuration * * Teensy * row: 7 8 9 10 11 12 13 * pin: B0 B1 B2 B3 D2 D3 C6 * * MCP23018 * row: 0 1 2 3 4 5 6 * pin: A0 A1 A2 A3 A4 A5 A6 */ static void unselect_rows(void) { // unselect on mcp23018 if (mcp23018_status) { // if there was an error // do nothing } else { // set all rows hi-Z : 1 mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out; mcp23018_status = i2c_write(GPIOA); if (mcp23018_status) goto out; mcp23018_status = i2c_write( 0xFF & ~(0<<7) ); if (mcp23018_status) goto out; out: i2c_stop(); } // unselect on teensy // Hi-Z(DDR:0, PORT:0) to unselect DDRB &= ~(1<<0 | 1<<1 | 1<<2 | 1<<3); PORTB &= ~(1<<0 | 1<<1 | 1<<2 | 1<<3); DDRD &= ~(1<<2 | 1<<3); PORTD &= ~(1<<2 | 1<<3); DDRC &= ~(1<<6); PORTC &= ~(1<<6); } static void select_row(uint8_t row) { if (row < 7) { // select on mcp23018 if (mcp23018_status) { // if there was an error // do nothing } else { // set active row low : 0 // set other rows hi-Z : 1 mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out; mcp23018_status = i2c_write(GPIOA); if (mcp23018_status) goto out; mcp23018_status = i2c_write( 0xFF & ~(1<<row) & ~(0<<7) ); if (mcp23018_status) goto out; out: i2c_stop(); } } else { // select on teensy // Output low(DDR:1, PORT:0) to select switch (row) { case 7: DDRB |= (1<<0); PORTB &= ~(1<<0); break; case 8: DDRB |= (1<<1); PORTB &= ~(1<<1); break; case 9: DDRB |= (1<<2); PORTB &= ~(1<<2); break; case 10: DDRB |= (1<<3); PORTB &= ~(1<<3); break; case 11: DDRD |= (1<<2); PORTD &= ~(1<<3); break; case 12: DDRD |= (1<<3); PORTD &= ~(1<<3); break; case 13: DDRC |= (1<<6); PORTC &= ~(1<<6); break; } } }