1
0
Fork 0
qmk_firmware/keyboards/mxss/rgblight.c
David Dai b7688590b8 Change rgblight_get_mode & rgb_matrix_get_mode's return type to uint8_t. ()
* Change rgblight_get_mode's return type to uint8_t.

Since rgblight_get_mode() is just returning rgblight_config_t.mode,
it should match rgblight_config_t.mode's type: uint8_t.

* Update rgb_matrix_get_mode to return uint8_t.
2018-12-31 08:42:58 -08:00

827 lines
23 KiB
C

/* Copyright 2016-2017 Yang Liu
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "progmem.h"
#include "timer.h"
#include "rgblight.h"
#include "debug.h"
#include "led_tables.h"
#include "mxss_frontled.h"
#ifndef RGBLIGHT_LIMIT_VAL
#define RGBLIGHT_LIMIT_VAL 255
#endif
#define MIN(a,b) (((a)<(b))?(a):(b))
#define MAX(a,b) (((a)>(b))?(a):(b))
#define LED_PTRTOIND(ptr) ((uint32_t) (ptr - led)/sizeof(LED_TYPE))
void copyrgb(LED_TYPE *src, LED_TYPE *dst);
__attribute__ ((weak))
const uint8_t RGBLED_BREATHING_INTERVALS[] PROGMEM = {30, 20, 10, 5};
__attribute__ ((weak))
const uint8_t RGBLED_RAINBOW_MOOD_INTERVALS[] PROGMEM = {120, 60, 30};
__attribute__ ((weak))
const uint8_t RGBLED_RAINBOW_SWIRL_INTERVALS[] PROGMEM = {100, 50, 20};
__attribute__ ((weak))
const uint8_t RGBLED_SNAKE_INTERVALS[] PROGMEM = {100, 50, 20};
__attribute__ ((weak))
const uint8_t RGBLED_KNIGHT_INTERVALS[] PROGMEM = {127, 63, 31};
__attribute__ ((weak))
const uint16_t RGBLED_GRADIENT_RANGES[] PROGMEM = {360, 240, 180, 120, 90};
__attribute__ ((weak))
const uint16_t RGBLED_RGBTEST_INTERVALS[] PROGMEM = {1024};
rgblight_config_t rgblight_config;
LED_TYPE led[RGBLED_NUM];
bool rgblight_timer_enabled = false;
extern uint8_t fled_mode;
extern uint8_t fled_val;
extern LED_TYPE fleds[2];
hs_set fled_hs[2];
void sethsv(uint16_t hue, uint8_t sat, uint8_t val, LED_TYPE *led1) {
uint8_t r = 0, g = 0, b = 0, base, color;
// if led is front leds, cache the hue and sat values
if (led1 == &led[RGBLIGHT_FLED1]) {
fled_hs[0].hue = hue;
fled_hs[0].sat = sat;
} else if (led1 == &led[RGBLIGHT_FLED2]) {
fled_hs[1].hue = hue;
fled_hs[1].sat = sat;
}
if (val > RGBLIGHT_LIMIT_VAL) {
val=RGBLIGHT_LIMIT_VAL; // limit the val
}
if (sat == 0) { // Acromatic color (gray). Hue doesn't mind.
r = val;
g = val;
b = val;
} else {
base = ((255 - sat) * val) >> 8;
color = (val - base) * (hue % 60) / 60;
switch (hue / 60) {
case 0:
r = val;
g = base + color;
b = base;
break;
case 1:
r = val - color;
g = val;
b = base;
break;
case 2:
r = base;
g = val;
b = base + color;
break;
case 3:
r = base;
g = val - color;
b = val;
break;
case 4:
r = base + color;
g = base;
b = val;
break;
case 5:
r = val;
g = base;
b = val - color;
break;
}
}
r = pgm_read_byte(&CIE1931_CURVE[r]);
g = pgm_read_byte(&CIE1931_CURVE[g]);
b = pgm_read_byte(&CIE1931_CURVE[b]);
setrgb(r, g, b, led1);
}
void setrgb(uint8_t r, uint8_t g, uint8_t b, LED_TYPE *led1) {
(*led1).r = r;
(*led1).g = g;
(*led1).b = b;
}
void copyrgb(LED_TYPE *src, LED_TYPE *dst) {
(*dst).r = (*src).r;
(*dst).g = (*src).g;
(*dst).b = (*src).b;
}
uint32_t eeconfig_read_rgblight(void) {
return eeprom_read_dword(EECONFIG_RGBLIGHT);
}
void eeconfig_update_rgblight(uint32_t val) {
eeprom_update_dword(EECONFIG_RGBLIGHT, val);
}
void eeconfig_update_rgblight_default(void) {
dprintf("eeconfig_update_rgblight_default\n");
rgblight_config.enable = 1;
rgblight_config.mode = 1;
rgblight_config.hue = 0;
rgblight_config.sat = 255;
rgblight_config.val = RGBLIGHT_LIMIT_VAL;
rgblight_config.speed = 0;
eeconfig_update_rgblight(rgblight_config.raw);
}
void eeconfig_debug_rgblight(void) {
dprintf("rgblight_config eprom\n");
dprintf("rgblight_config.enable = %d\n", rgblight_config.enable);
dprintf("rghlight_config.mode = %d\n", rgblight_config.mode);
dprintf("rgblight_config.hue = %d\n", rgblight_config.hue);
dprintf("rgblight_config.sat = %d\n", rgblight_config.sat);
dprintf("rgblight_config.val = %d\n", rgblight_config.val);
dprintf("rgblight_config.speed = %d\n", rgblight_config.speed);
}
void rgblight_init(void) {
debug_enable = 1; // Debug ON!
dprintf("rgblight_init called.\n");
dprintf("rgblight_init start!\n");
if (!eeconfig_is_enabled()) {
dprintf("rgblight_init eeconfig is not enabled.\n");
eeconfig_init();
eeconfig_update_rgblight_default();
}
rgblight_config.raw = eeconfig_read_rgblight();
if (!rgblight_config.mode) {
dprintf("rgblight_init rgblight_config.mode = 0. Write default values to EEPROM.\n");
eeconfig_update_rgblight_default();
rgblight_config.raw = eeconfig_read_rgblight();
}
eeconfig_debug_rgblight(); // display current eeprom values
#ifdef RGBLIGHT_ANIMATIONS
rgblight_timer_init(); // setup the timer
#endif
if (rgblight_config.enable) {
rgblight_mode_noeeprom(rgblight_config.mode);
}
}
void rgblight_update_dword(uint32_t dword) {
rgblight_config.raw = dword;
eeconfig_update_rgblight(rgblight_config.raw);
if (rgblight_config.enable)
rgblight_mode(rgblight_config.mode);
else {
#ifdef RGBLIGHT_ANIMATIONS
rgblight_timer_disable();
#endif
rgblight_set();
}
}
void rgblight_increase(void) {
uint8_t mode = 0;
if (rgblight_config.mode < RGBLIGHT_MODES) {
mode = rgblight_config.mode + 1;
}
rgblight_mode(mode);
}
void rgblight_decrease(void) {
uint8_t mode = 0;
// Mode will never be < 1. If it ever is, eeprom needs to be initialized.
if (rgblight_config.mode > 1) {
mode = rgblight_config.mode - 1;
}
rgblight_mode(mode);
}
void rgblight_step(void) {
uint8_t mode = 0;
mode = rgblight_config.mode + 1;
if (mode > RGBLIGHT_MODES) {
mode = 1;
}
rgblight_mode(mode);
}
void rgblight_step_reverse(void) {
uint8_t mode = 0;
mode = rgblight_config.mode - 1;
if (mode < 1) {
mode = RGBLIGHT_MODES;
}
rgblight_mode(mode);
}
uint8_t rgblight_get_mode(void) {
if (!rgblight_config.enable) {
return false;
}
return rgblight_config.mode;
}
void rgblight_mode_eeprom_helper(uint8_t mode, bool write_to_eeprom) {
if (!rgblight_config.enable) {
return;
}
if (mode < 1) {
rgblight_config.mode = 1;
} else if (mode > RGBLIGHT_MODES) {
rgblight_config.mode = RGBLIGHT_MODES;
} else {
rgblight_config.mode = mode;
}
if (write_to_eeprom) {
eeconfig_update_rgblight(rgblight_config.raw);
xprintf("rgblight mode [EEPROM]: %u\n", rgblight_config.mode);
} else {
xprintf("rgblight mode [NOEEPROM]: %u\n", rgblight_config.mode);
}
if (rgblight_config.mode == 1) {
#ifdef RGBLIGHT_ANIMATIONS
rgblight_timer_disable();
#endif
} else if ((rgblight_config.mode >= 2 && rgblight_config.mode <= 24) ||
rgblight_config.mode == 35 ) {
// MODE 2-5, breathing
// MODE 6-8, rainbow mood
// MODE 9-14, rainbow swirl
// MODE 15-20, snake
// MODE 21-23, knight
// MODE 24, xmas
// MODE 35 RGB test
#ifdef RGBLIGHT_ANIMATIONS
rgblight_timer_enable();
#endif
} else if (rgblight_config.mode >= 25 && rgblight_config.mode <= 34) {
// MODE 25-34, static gradient
#ifdef RGBLIGHT_ANIMATIONS
rgblight_timer_disable();
#endif
}
rgblight_sethsv_noeeprom(rgblight_config.hue, rgblight_config.sat, rgblight_config.val);
}
void rgblight_mode(uint8_t mode) {
rgblight_mode_eeprom_helper(mode, true);
}
void rgblight_mode_noeeprom(uint8_t mode) {
rgblight_mode_eeprom_helper(mode, false);
}
void rgblight_toggle(void) {
xprintf("rgblight toggle [EEPROM]: rgblight_config.enable = %u\n", !rgblight_config.enable);
if (rgblight_config.enable) {
rgblight_disable();
}
else {
rgblight_enable();
}
}
void rgblight_toggle_noeeprom(void) {
xprintf("rgblight toggle [NOEEPROM]: rgblight_config.enable = %u\n", !rgblight_config.enable);
if (rgblight_config.enable) {
rgblight_disable_noeeprom();
}
else {
rgblight_enable_noeeprom();
}
}
void rgblight_enable(void) {
rgblight_config.enable = 1;
// No need to update EEPROM here. rgblight_mode() will do that, actually
//eeconfig_update_rgblight(rgblight_config.raw);
xprintf("rgblight enable [EEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable);
rgblight_mode(rgblight_config.mode);
}
void rgblight_enable_noeeprom(void) {
rgblight_config.enable = 1;
xprintf("rgblight enable [NOEEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable);
rgblight_mode_noeeprom(rgblight_config.mode);
}
void rgblight_disable(void) {
rgblight_config.enable = 0;
eeconfig_update_rgblight(rgblight_config.raw);
xprintf("rgblight disable [EEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable);
#ifdef RGBLIGHT_ANIMATIONS
//rgblight_timer_disable();
#endif
_delay_ms(50);
rgblight_set();
}
void rgblight_disable_noeeprom(void) {
rgblight_config.enable = 0;
xprintf("rgblight disable [noEEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable);
#ifdef RGBLIGHT_ANIMATIONS
rgblight_timer_disable();
#endif
_delay_ms(50);
rgblight_set();
}
// Deals with the messy details of incrementing an integer
uint8_t increment( uint8_t value, uint8_t step, uint8_t min, uint8_t max ) {
int16_t new_value = value;
new_value += step;
return MIN( MAX( new_value, min ), max );
}
uint8_t decrement( uint8_t value, uint8_t step, uint8_t min, uint8_t max ) {
int16_t new_value = value;
new_value -= step;
return MIN( MAX( new_value, min ), max );
}
void rgblight_increase_hue(void) {
uint16_t hue;
hue = (rgblight_config.hue+RGBLIGHT_HUE_STEP) % 360;
rgblight_sethsv(hue, rgblight_config.sat, rgblight_config.val);
}
void rgblight_decrease_hue(void) {
uint16_t hue;
if (rgblight_config.hue-RGBLIGHT_HUE_STEP < 0) {
hue = (rgblight_config.hue + 360 - RGBLIGHT_HUE_STEP) % 360;
} else {
hue = (rgblight_config.hue - RGBLIGHT_HUE_STEP) % 360;
}
rgblight_sethsv(hue, rgblight_config.sat, rgblight_config.val);
}
void rgblight_increase_sat(void) {
uint8_t sat;
if (rgblight_config.sat + RGBLIGHT_SAT_STEP > 255) {
sat = 255;
} else {
sat = rgblight_config.sat + RGBLIGHT_SAT_STEP;
}
rgblight_sethsv(rgblight_config.hue, sat, rgblight_config.val);
}
void rgblight_decrease_sat(void) {
uint8_t sat;
if (rgblight_config.sat - RGBLIGHT_SAT_STEP < 0) {
sat = 0;
} else {
sat = rgblight_config.sat - RGBLIGHT_SAT_STEP;
}
rgblight_sethsv(rgblight_config.hue, sat, rgblight_config.val);
}
void rgblight_increase_val(void) {
uint8_t val;
if (rgblight_config.val + RGBLIGHT_VAL_STEP > RGBLIGHT_LIMIT_VAL) {
val = RGBLIGHT_LIMIT_VAL;
} else {
val = rgblight_config.val + RGBLIGHT_VAL_STEP;
}
rgblight_sethsv(rgblight_config.hue, rgblight_config.sat, val);
}
void rgblight_decrease_val(void) {
uint8_t val;
if (rgblight_config.val - RGBLIGHT_VAL_STEP < 0) {
val = 0;
} else {
val = rgblight_config.val - RGBLIGHT_VAL_STEP;
}
rgblight_sethsv(rgblight_config.hue, rgblight_config.sat, val);
}
void rgblight_increase_speed(void) {
rgblight_config.speed = increment( rgblight_config.speed, 1, 0, 3 );
eeconfig_update_rgblight(rgblight_config.raw);//EECONFIG needs to be increased to support this
}
void rgblight_decrease_speed(void) {
rgblight_config.speed = decrement( rgblight_config.speed, 1, 0, 3 );
eeconfig_update_rgblight(rgblight_config.raw);//EECONFIG needs to be increased to support this
}
void rgblight_sethsv_noeeprom_old(uint16_t hue, uint8_t sat, uint8_t val) {
if (rgblight_config.enable) {
LED_TYPE tmp_led;
sethsv(hue, sat, val, &tmp_led);
fled_hs[0].hue = fled_hs[1].hue = hue;
fled_hs[0].sat = fled_hs[1].sat = sat;
// dprintf("rgblight set hue [MEMORY]: %u,%u,%u\n", inmem_config.hue, inmem_config.sat, inmem_config.val);
rgblight_setrgb(tmp_led.r, tmp_led.g, tmp_led.b);
}
}
void rgblight_sethsv_eeprom_helper(uint16_t hue, uint8_t sat, uint8_t val, bool write_to_eeprom) {
if (rgblight_config.enable) {
if (rgblight_config.mode == 1) {
// same static color
LED_TYPE tmp_led;
sethsv(hue, sat, val, &tmp_led);
fled_hs[0].hue = fled_hs[1].hue = hue;
fled_hs[0].sat = fled_hs[1].sat = sat;
rgblight_setrgb(tmp_led.r, tmp_led.g, tmp_led.b);
} else {
// all LEDs in same color
if (rgblight_config.mode >= 2 && rgblight_config.mode <= 5) {
// breathing mode, ignore the change of val, use in memory value instead
val = rgblight_config.val;
} else if (rgblight_config.mode >= 6 && rgblight_config.mode <= 14) {
// rainbow mood and rainbow swirl, ignore the change of hue
hue = rgblight_config.hue;
} else if (rgblight_config.mode >= 25 && rgblight_config.mode <= 34) {
// static gradient
uint16_t _hue;
int8_t direction = ((rgblight_config.mode - 25) % 2) ? -1 : 1;
uint16_t range = pgm_read_word(&RGBLED_GRADIENT_RANGES[(rgblight_config.mode - 25) / 2]);
for (uint8_t i = 0; i < RGBLED_NUM; i++) {
_hue = (range / RGBLED_NUM * i * direction + hue + 360) % 360;
dprintf("rgblight rainbow set hsv: %u,%u,%d,%u\n", i, _hue, direction, range);
sethsv(_hue, sat, val, (LED_TYPE *)&led[i]);
}
rgblight_set();
}
}
rgblight_config.hue = hue;
rgblight_config.sat = sat;
rgblight_config.val = val;
if (write_to_eeprom) {
eeconfig_update_rgblight(rgblight_config.raw);
xprintf("rgblight set hsv [EEPROM]: %u,%u,%u\n", rgblight_config.hue, rgblight_config.sat, rgblight_config.val);
} else {
xprintf("rgblight set hsv [NOEEPROM]: %u,%u,%u\n", rgblight_config.hue, rgblight_config.sat, rgblight_config.val);
}
}
}
void rgblight_sethsv(uint16_t hue, uint8_t sat, uint8_t val) {
rgblight_sethsv_eeprom_helper(hue, sat, val, true);
}
void rgblight_sethsv_noeeprom(uint16_t hue, uint8_t sat, uint8_t val) {
rgblight_sethsv_eeprom_helper(hue, sat, val, false);
}
uint16_t rgblight_get_hue(void) {
return rgblight_config.hue;
}
uint8_t rgblight_get_sat(void) {
return rgblight_config.sat;
}
uint8_t rgblight_get_val(void) {
return rgblight_config.val;
}
void rgblight_setrgb(uint8_t r, uint8_t g, uint8_t b) {
if (!rgblight_config.enable) { return; }
for (uint8_t i = 0; i < RGBLED_NUM; i++) {
led[i].r = r;
led[i].g = g;
led[i].b = b;
}
rgblight_set();
}
void rgblight_setrgb_at(uint8_t r, uint8_t g, uint8_t b, uint8_t index) {
if (!rgblight_config.enable || index >= RGBLED_NUM) { return; }
led[index].r = r;
led[index].g = g;
led[index].b = b;
rgblight_set();
}
void rgblight_sethsv_at(uint16_t hue, uint8_t sat, uint8_t val, uint8_t index) {
if (!rgblight_config.enable) { return; }
LED_TYPE tmp_led;
sethsv(hue, sat, val, &tmp_led);
rgblight_setrgb_at(tmp_led.r, tmp_led.g, tmp_led.b, index);
}
void rgblight_set(void) {
if (!rgblight_config.enable) {
for (uint8_t i = 0; i < RGBLED_NUM; i++) {
if (i == RGBLIGHT_FLED1 && i == RGBLIGHT_FLED2)
continue;
led[i].r = 0;
led[i].g = 0;
led[i].b = 0;
}
}
switch (fled_mode) {
case FLED_OFF:
setrgb(0, 0, 0, &led[RGBLIGHT_FLED1]);
setrgb(0, 0, 0, &led[RGBLIGHT_FLED2]);
break;
case FLED_INDI:
copyrgb(&fleds[0], &led[RGBLIGHT_FLED1]);
copyrgb(&fleds[1], &led[RGBLIGHT_FLED2]);
break;
case FLED_RGB:
if (fled_hs[0].hue == 0 && fled_hs[0].hue == 0 && (rgblight_config.mode >= 15 && rgblight_config.mode <= 23))
setrgb(0, 0, 0, &led[RGBLIGHT_FLED1]);
else
sethsv(fled_hs[0].hue, fled_hs[0].sat, fled_val, &led[RGBLIGHT_FLED1]);
if (fled_hs[1].hue == 0 && fled_hs[1].hue == 0 && (rgblight_config.mode >= 15 && rgblight_config.mode <= 23))
setrgb(0, 0, 0, &led[RGBLIGHT_FLED2]);
else
sethsv(fled_hs[1].hue, fled_hs[1].sat, fled_val, &led[RGBLIGHT_FLED2]);
break;
default:
break;
}
ws2812_setleds(led, RGBLED_NUM);
}
#ifdef RGBLIGHT_ANIMATIONS
// Animation timer -- AVR Timer3
void rgblight_timer_init(void) {
// static uint8_t rgblight_timer_is_init = 0;
// if (rgblight_timer_is_init) {
// return;
// }
// rgblight_timer_is_init = 1;
// /* Timer 3 setup */
// TCCR3B = _BV(WGM32) // CTC mode OCR3A as TOP
// | _BV(CS30); // Clock selelct: clk/1
// /* Set TOP value */
// uint8_t sreg = SREG;
// cli();
// OCR3AH = (RGBLED_TIMER_TOP >> 8) & 0xff;
// OCR3AL = RGBLED_TIMER_TOP & 0xff;
// SREG = sreg;
rgblight_timer_enabled = true;
}
void rgblight_timer_enable(void) {
rgblight_timer_enabled = true;
dprintf("TIMER3 enabled.\n");
}
void rgblight_timer_disable(void) {
rgblight_timer_enabled = false;
dprintf("TIMER3 disabled.\n");
}
void rgblight_timer_toggle(void) {
rgblight_timer_enabled ^= rgblight_timer_enabled;
dprintf("TIMER3 toggled.\n");
}
void rgblight_show_solid_color(uint8_t r, uint8_t g, uint8_t b) {
rgblight_enable();
rgblight_mode(1);
rgblight_setrgb(r, g, b);
}
void rgblight_task(void) {
if (rgblight_timer_enabled) {
// mode = 1, static light, do nothing here
if (rgblight_config.mode >= 2 && rgblight_config.mode <= 5) {
// mode = 2 to 5, breathing mode
rgblight_effect_breathing(rgblight_config.mode - 2);
} else if (rgblight_config.mode >= 6 && rgblight_config.mode <= 8) {
// mode = 6 to 8, rainbow mood mod
rgblight_effect_rainbow_mood(rgblight_config.mode - 6);
} else if (rgblight_config.mode >= 9 && rgblight_config.mode <= 14) {
// mode = 9 to 14, rainbow swirl mode
rgblight_effect_rainbow_swirl(rgblight_config.mode - 9);
} else if (rgblight_config.mode >= 15 && rgblight_config.mode <= 20) {
// mode = 15 to 20, snake mode
rgblight_effect_snake(rgblight_config.mode - 15);
} else if (rgblight_config.mode >= 21 && rgblight_config.mode <= 23) {
// mode = 21 to 23, knight mode
rgblight_effect_knight(rgblight_config.mode - 21);
} else if (rgblight_config.mode == 24) {
// mode = 24, christmas mode
rgblight_effect_christmas();
} else if (rgblight_config.mode == 35) {
// mode = 35, RGB test
rgblight_effect_rgbtest();
}
}
}
// Effects
void rgblight_effect_breathing(uint8_t interval) {
static uint8_t pos = 0;
static uint16_t last_timer = 0;
float val;
if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_BREATHING_INTERVALS[interval])) {
return;
}
last_timer = timer_read();
// http://sean.voisen.org/blog/2011/10/breathing-led-with-arduino/
val = (exp(sin((pos/255.0)*M_PI)) - RGBLIGHT_EFFECT_BREATHE_CENTER/M_E)*(RGBLIGHT_EFFECT_BREATHE_MAX/(M_E-1/M_E));
rgblight_sethsv_noeeprom_old(rgblight_config.hue, rgblight_config.sat, val);
pos = (pos + 1) % 256;
}
void rgblight_effect_rainbow_mood(uint8_t interval) {
static uint16_t current_hue = 0;
static uint16_t last_timer = 0;
if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_RAINBOW_MOOD_INTERVALS[interval])) {
return;
}
last_timer = timer_read();
rgblight_sethsv_noeeprom_old(current_hue, rgblight_config.sat, rgblight_config.val);
current_hue = (current_hue + 1) % 360;
}
void rgblight_effect_rainbow_swirl(uint8_t interval) {
static uint16_t current_hue = 0;
static uint16_t last_timer = 0;
uint16_t hue;
uint8_t i;
if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_RAINBOW_SWIRL_INTERVALS[interval / 2])) {
return;
}
last_timer = timer_read();
for (i = 0; i < RGBLED_NUM; i++) {
hue = (360 / RGBLED_NUM * i + current_hue) % 360;
sethsv(hue, rgblight_config.sat, rgblight_config.val, (LED_TYPE *)&led[i]);
}
rgblight_set();
if (interval % 2) {
current_hue = (current_hue + 1) % 360;
} else {
if (current_hue - 1 < 0) {
current_hue = 359;
} else {
current_hue = current_hue - 1;
}
}
}
void rgblight_effect_snake(uint8_t interval) {
static uint8_t pos = 0;
static uint16_t last_timer = 0;
uint8_t i, j;
int8_t k;
int8_t increment = 1;
if (interval % 2) {
increment = -1;
}
if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_SNAKE_INTERVALS[interval / 2])) {
return;
}
last_timer = timer_read();
fled_hs[0].hue = fled_hs[1].hue = 0;
fled_hs[0].sat = fled_hs[1].sat = 0;
for (i = 0; i < RGBLED_NUM; i++) {
led[i].r = 0;
led[i].g = 0;
led[i].b = 0;
for (j = 0; j < RGBLIGHT_EFFECT_SNAKE_LENGTH; j++) {
k = pos + j * increment;
if (k < 0) {
k = k + RGBLED_NUM;
}
if (i == k) {
sethsv(rgblight_config.hue, rgblight_config.sat, (uint8_t)(rgblight_config.val*(RGBLIGHT_EFFECT_SNAKE_LENGTH-j)/RGBLIGHT_EFFECT_SNAKE_LENGTH), (LED_TYPE *)&led[i]);
}
}
}
rgblight_set();
if (increment == 1) {
if (pos - 1 < 0) {
pos = RGBLED_NUM - 1;
} else {
pos -= 1;
}
} else {
pos = (pos + 1) % RGBLED_NUM;
}
}
void rgblight_effect_knight(uint8_t interval) {
static uint16_t last_timer = 0;
if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_KNIGHT_INTERVALS[interval])) {
return;
}
last_timer = timer_read();
static int8_t low_bound = 0;
static int8_t high_bound = RGBLIGHT_EFFECT_KNIGHT_LENGTH - 1;
static int8_t increment = 1;
uint8_t i, cur;
// Set all the LEDs to 0
for (i = 0; i < RGBLED_NUM; i++) {
led[i].r = 0;
led[i].g = 0;
led[i].b = 0;
}
// Determine which LEDs should be lit up
for (i = 0; i < RGBLIGHT_EFFECT_KNIGHT_LED_NUM; i++) {
cur = (i + RGBLIGHT_EFFECT_KNIGHT_OFFSET) % RGBLED_NUM;
if (i >= low_bound && i <= high_bound) {
sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val, (LED_TYPE *)&led[cur]);
} else {
if (i == RGBLIGHT_FLED1 || i == RGBLIGHT_FLED2) {
fled_hs[0].hue = fled_hs[1].hue = 0;
fled_hs[0].sat = fled_hs[1].sat = 0;
}
led[cur].r = 0;
led[cur].g = 0;
led[cur].b = 0;
}
}
rgblight_set();
// Move from low_bound to high_bound changing the direction we increment each
// time a boundary is hit.
low_bound += increment;
high_bound += increment;
if (high_bound <= 0 || low_bound >= RGBLIGHT_EFFECT_KNIGHT_LED_NUM - 1) {
increment = -increment;
}
}
void rgblight_effect_christmas(void) {
static uint16_t current_offset = 0;
static uint16_t last_timer = 0;
uint16_t hue;
uint8_t i;
if (timer_elapsed(last_timer) < RGBLIGHT_EFFECT_CHRISTMAS_INTERVAL) {
return;
}
last_timer = timer_read();
current_offset = (current_offset + 1) % 2;
for (i = 0; i < RGBLED_NUM; i++) {
hue = 0 + ((i/RGBLIGHT_EFFECT_CHRISTMAS_STEP + current_offset) % 2) * 120;
sethsv(hue, rgblight_config.sat, rgblight_config.val, (LED_TYPE *)&led[i]);
}
rgblight_set();
}
void rgblight_effect_rgbtest(void) {
static uint8_t pos = 0;
static uint16_t last_timer = 0;
static uint8_t maxval = 0;
uint8_t g; uint8_t r; uint8_t b;
if (timer_elapsed(last_timer) < pgm_read_word(&RGBLED_RGBTEST_INTERVALS[0])) {
return;
}
if( maxval == 0 ) {
LED_TYPE tmp_led;
sethsv(0, 255, RGBLIGHT_LIMIT_VAL, &tmp_led);
maxval = tmp_led.r;
}
last_timer = timer_read();
g = r = b = 0;
switch( pos ) {
case 0: r = maxval; break;
case 1: g = maxval; break;
case 2: b = maxval; break;
}
rgblight_setrgb(r, g, b);
pos = (pos + 1) % 3;
}
#endif /* RGBLIGHT_ANIMATIONS */