212 lines
5.4 KiB
Python
212 lines
5.4 KiB
Python
import fileinput
|
|
from pprint import pprint
|
|
import itertools
|
|
from copy import deepcopy
|
|
from typing import List, Tuple, Optional, Dict
|
|
|
|
N = 10
|
|
SNEK_POSITIONS = (
|
|
(0, 0),
|
|
(1, 1),
|
|
(4, 1),
|
|
(5, 0),
|
|
(6, 0),
|
|
(7, 1),
|
|
(10, 1),
|
|
(11, 0),
|
|
(12, 0),
|
|
(13, 1),
|
|
(16, 1),
|
|
(17, 0),
|
|
(18, 0),
|
|
(18, -1),
|
|
(19, 0),
|
|
)
|
|
|
|
Tile = List[List[bool]]
|
|
Position = Tuple[int, int]
|
|
Extremes = Tuple[int, int, int, int]
|
|
|
|
|
|
def parse() -> List[Tuple[int, Tile]]:
|
|
current_tile = None
|
|
tiles = []
|
|
for line in fileinput.input():
|
|
line = line.strip()
|
|
if not line:
|
|
continue
|
|
|
|
if line.startswith("Tile "):
|
|
if current_tile:
|
|
assert len(current_tile) == N
|
|
tiles.append((current_id, current_tile))
|
|
current_id = int(line[5:-1])
|
|
current_tile = []
|
|
else:
|
|
assert len(line) == N
|
|
current_tile.append([c == "#" for c in line])
|
|
|
|
assert len(current_tile) == N
|
|
tiles.append((current_id, current_tile))
|
|
return tiles
|
|
|
|
|
|
def aligns_right(left: Tile, right: Tile) -> bool:
|
|
return all(left_row[-1] == right_row[0] for (left_row, right_row) in zip(left, right))
|
|
|
|
|
|
def aligns_bottom(top: Tile, bottom: Tile) -> bool:
|
|
return top[-1] == bottom[0]
|
|
|
|
|
|
def aligns(a: Tile, b: Tile) -> Optional[Position]:
|
|
if aligns_bottom(a, b):
|
|
return 0, 1
|
|
if aligns_bottom(b, a):
|
|
return 0, -1
|
|
if aligns_right(a, b):
|
|
return 1, 0
|
|
if aligns_right(b, a):
|
|
return -1, 0
|
|
return None
|
|
|
|
|
|
def rotate(tile: Tile) -> Tile:
|
|
output = list(reversed(tile))
|
|
for y in range(len(tile)):
|
|
for x in range(y):
|
|
output[y][x], output[x][y] = output[x][y], output[y][x]
|
|
return output
|
|
|
|
|
|
def flip(a: Tile) -> Tile:
|
|
return list(reversed(a))
|
|
|
|
|
|
def rotate_align(a: Tile, b: Tile) -> Optional[Tuple[Tile, Position]]:
|
|
"""
|
|
Rotates and flips a and checks if it aligns for every possible orientation.
|
|
"""
|
|
for _ in range(4):
|
|
if pos := aligns(a, b):
|
|
return b, pos
|
|
bf = flip(b)
|
|
|
|
if pos := aligns(a, bf):
|
|
return bf, pos
|
|
b = rotate(b)
|
|
return None
|
|
|
|
|
|
def part1(
|
|
tiles: List[Tuple[int, Tile]]
|
|
) -> Tuple[Dict[Position, Tuple[int, Tile]], Extremes]:
|
|
tile_positions = {tiles[0][0]: (0, 0)}
|
|
position_tiles = {(0, 0): tiles[0]}
|
|
|
|
while len(tile_positions) != len(tiles):
|
|
for a_id, _ in tiles:
|
|
try:
|
|
(a_x, a_y) = a_pos = tile_positions[a_id]
|
|
_, a_tile = position_tiles[a_pos]
|
|
except KeyError:
|
|
continue
|
|
|
|
for b_id, b_tile in tiles:
|
|
if b_id in tile_positions or a_id == b_id:
|
|
continue
|
|
|
|
aligned = rotate_align(a_tile, b_tile)
|
|
if aligned is not None:
|
|
transformed, b_pos = aligned
|
|
dx, dy = b_pos
|
|
b_x = a_x + dx
|
|
b_y = a_y + dy
|
|
tile_positions[b_id] = (b_x, b_y)
|
|
position_tiles[(b_x, b_y)] = b_id, transformed
|
|
|
|
min_y = min(y for (_, y) in tile_positions.values())
|
|
max_y = max(y for (_, y) in tile_positions.values())
|
|
min_x = min(x for (x, _) in tile_positions.values())
|
|
max_x = max(x for (x, _) in tile_positions.values())
|
|
|
|
bl, _ = position_tiles[(min_x, min_y)]
|
|
br, _ = position_tiles[(max_x, min_y)]
|
|
tl, _ = position_tiles[(min_x, max_y)]
|
|
tr, _ = position_tiles[(max_x, max_y)]
|
|
print("Part 1:", tl * tr * bl * br)
|
|
|
|
return position_tiles, (min_x, max_x, min_y, max_y)
|
|
|
|
|
|
def is_snek(image: Tile, start_x: int, start_y: int) -> bool:
|
|
for (x, y) in SNEK_POSITIONS:
|
|
try:
|
|
if not image[y + start_y][x + start_x]:
|
|
return False
|
|
except:
|
|
return False
|
|
return True
|
|
|
|
|
|
def find_sneks(b: Tile) -> List[Position]:
|
|
sneks = []
|
|
for (x, y) in itertools.product(range(8 * 12), repeat=2):
|
|
if is_snek(b, x, y):
|
|
sneks.append((x, y))
|
|
return sneks
|
|
|
|
|
|
def rotate_find_sneks(b: Tile) -> Tuple[Tile, List[Position]]:
|
|
for _ in range(4):
|
|
if position := find_sneks(b):
|
|
return b, position
|
|
bf = flip(b)
|
|
|
|
if position := find_sneks(bf):
|
|
return bf, position
|
|
b = rotate(b)
|
|
raise RuntimeError("no sneks found")
|
|
|
|
|
|
def remove_snek(image: Tile, snek_position: Position) -> None:
|
|
# :(
|
|
(x, y) = snek_position
|
|
for (x_, y_) in SNEK_POSITIONS:
|
|
image[y + y_][x + x_] = False
|
|
|
|
|
|
def part2(
|
|
position_tiles: Dict[Position, Tuple[int, Tile]],
|
|
extremes: Tuple[int, int, int, int],
|
|
) -> None:
|
|
min_x, max_x, min_y, max_y = extremes
|
|
image = [[False] * 8 * (max_x - min_x + 1) for _ in range(8 * (max_y - min_y + 1))]
|
|
for (x, y), (_, tile) in position_tiles.items():
|
|
x_ = (x - min_x) * 8
|
|
y_ = (y - min_y) * 8
|
|
for i, row in enumerate(tile[1:-1]):
|
|
for j, c in enumerate(row[1:-1]):
|
|
image[i + y_][j + x_] = c
|
|
|
|
rotated_image, snek_positions = rotate_find_sneks(image)
|
|
for snek_position in snek_positions:
|
|
remove_snek(rotated_image, snek_position)
|
|
|
|
part2 = 0
|
|
for row in rotated_image:
|
|
for c in row:
|
|
if c:
|
|
part2 += 1
|
|
|
|
print("Part 2:", part2)
|
|
|
|
|
|
def main() -> None:
|
|
tiles = parse()
|
|
position_tiles, extremes = part1(tiles)
|
|
part2(position_tiles, extremes)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|