244 lines
5.2 KiB
Python
244 lines
5.2 KiB
Python
import fileinput
|
|
from pprint import pprint
|
|
import itertools
|
|
from copy import deepcopy
|
|
|
|
N = 10
|
|
|
|
#
|
|
# Parse the input
|
|
#
|
|
current_tile = None
|
|
tiles = []
|
|
for line in fileinput.input():
|
|
line = line.strip()
|
|
if not line:
|
|
continue
|
|
|
|
if line.startswith("Tile "):
|
|
if current_tile:
|
|
assert len(current_tile) == N
|
|
tiles.append((current_id, current_tile))
|
|
current_id = int(line[5:-1])
|
|
current_tile = []
|
|
else:
|
|
assert len(line) == N
|
|
current_tile.append(list(line))
|
|
|
|
assert len(current_tile) == N
|
|
tiles.append((current_id, current_tile))
|
|
|
|
|
|
def aligns_right(left, right):
|
|
return all(left[y][-1] == right[y][0] for y in range(len(left)))
|
|
|
|
|
|
def aligns_bottom(top, bottom):
|
|
return all(top[-1][x] == bottom[0][x] for x in range(len(top)))
|
|
|
|
|
|
def aligns(apos, b):
|
|
ax, ay = apos
|
|
_, a = kek[(ax, ay)]
|
|
if aligns_right(a, b):
|
|
return 1, 0
|
|
if aligns_right(b, a):
|
|
return -1, 0
|
|
if aligns_bottom(a, b):
|
|
return 0, 1
|
|
if aligns_bottom(b, a):
|
|
return 0, -1
|
|
return None
|
|
|
|
|
|
def rotate(a):
|
|
output = deepcopy(a)
|
|
for y in range(len(a)):
|
|
for x in range(len(a)):
|
|
output[-1 - x][y] = a[y][x]
|
|
return output
|
|
|
|
|
|
def flip(a):
|
|
output = [None] * len(a)
|
|
for y in range(len(a)):
|
|
output[y] = list(reversed(a[y]))
|
|
return output
|
|
|
|
|
|
def rotate_align(a_pos, b):
|
|
"""
|
|
Rotates and flips a and checks if it aligns for every possible orientation.
|
|
"""
|
|
if d := aligns(a_pos, b):
|
|
return b, d
|
|
bf = flip(b)
|
|
if d := aligns(a_pos, bf):
|
|
return bf, d
|
|
|
|
b = rotate(b)
|
|
if d := aligns(a_pos, b):
|
|
return b, d
|
|
bf = flip(b)
|
|
if d := aligns(a_pos, bf):
|
|
return bf, d
|
|
|
|
b = rotate(b)
|
|
if d := aligns(a_pos, b):
|
|
return b, d
|
|
bf = flip(b)
|
|
if d := aligns(a_pos, bf):
|
|
return bf, d
|
|
|
|
b = rotate(b)
|
|
if d := aligns(a_pos, b):
|
|
return b, d
|
|
bf = flip(b)
|
|
if d := aligns(a_pos, bf):
|
|
return bf, d
|
|
|
|
return None, None
|
|
|
|
|
|
positions = {tiles[0][0]: ((0, 0), tiles[0][1])}
|
|
kek = {(0, 0): tiles[0]}
|
|
|
|
while len(positions) != len(tiles):
|
|
for a_id, _ in tiles:
|
|
((a_x, a_y), a_tile) = positions.get(a_id, ((None, None), None))
|
|
if not a_tile:
|
|
continue
|
|
|
|
for b_id, b_tile in tiles:
|
|
if b_id in positions or a_id == b_id:
|
|
continue
|
|
|
|
transformed, dpos = rotate_align((a_x, a_y), b_tile)
|
|
if dpos is not None:
|
|
dx, dy = dpos
|
|
b_x = a_x + dx
|
|
b_y = a_y + dy
|
|
positions[b_id] = (b_x, b_y), transformed
|
|
kek[(b_x, b_y)] = b_id, transformed
|
|
|
|
min_y = min(y for ((_, y), _) in positions.values())
|
|
max_y = max(y for ((_, y), _) in positions.values())
|
|
min_x = min(x for ((x, _), _) in positions.values())
|
|
max_x = max(x for ((x, _), _) in positions.values())
|
|
|
|
tilemap = {pos: (id, tile) for id, (pos, tile) in positions.items()}
|
|
bl, _ = tilemap[(min_x, min_y)]
|
|
br, _ = tilemap[(max_x, min_y)]
|
|
tl, _ = tilemap[(min_x, max_y)]
|
|
tr, _ = tilemap[(max_x, max_y)]
|
|
print("Part 1:", tl * tr * bl * br)
|
|
|
|
|
|
def is_snek(b, x, y):
|
|
for (x_, y_) in (
|
|
(0, 0),
|
|
(1, 1),
|
|
(4, 1),
|
|
(5, 0),
|
|
(6, 0),
|
|
(7, 1),
|
|
(10, 1),
|
|
(11, 0),
|
|
(12, 0),
|
|
(13, 1),
|
|
(16, 1),
|
|
(17, 0),
|
|
(18, 0),
|
|
(18, -1),
|
|
(19, 0),
|
|
):
|
|
try:
|
|
if b[y_ + y][x_ + x] == ".":
|
|
return False
|
|
except:
|
|
return False
|
|
return True
|
|
|
|
|
|
def find_sneks(b):
|
|
sneks = []
|
|
for (x, y) in itertools.product(range(8 * 12), repeat=2):
|
|
if is_snek(b, x, y):
|
|
print(x, y, "is snek")
|
|
sneks.append((x, y))
|
|
return sneks
|
|
|
|
|
|
def rotate_find_sneks(b):
|
|
if d := find_sneks(b):
|
|
return b, d
|
|
bf = flip(b)
|
|
if d := find_sneks(bf):
|
|
return bf, d
|
|
|
|
b = rotate(b)
|
|
if d := find_sneks(b):
|
|
return b, d
|
|
bf = flip(b)
|
|
if d := find_sneks(bf):
|
|
return bf, d
|
|
|
|
b = rotate(b)
|
|
if d := find_sneks(b):
|
|
return b, d
|
|
bf = flip(b)
|
|
if d := find_sneks(bf):
|
|
return bf, d
|
|
|
|
b = rotate(b)
|
|
if d := find_sneks(b):
|
|
return b, d
|
|
bf = flip(b)
|
|
if d := find_sneks(bf):
|
|
return bf, d
|
|
|
|
|
|
def remove_snek(snek):
|
|
# :(
|
|
(x, y) = snek
|
|
for (x_, y_) in (
|
|
(0, 0),
|
|
(1, 1),
|
|
(4, 1),
|
|
(5, 0),
|
|
(6, 0),
|
|
(7, 1),
|
|
(10, 1),
|
|
(11, 0),
|
|
(12, 0),
|
|
(13, 1),
|
|
(16, 1),
|
|
(17, 0),
|
|
(18, 0),
|
|
(18, -1),
|
|
(19, 0),
|
|
):
|
|
big_chungus[y + y_][x + x_] = '.'
|
|
|
|
|
|
chungus = [["."] * 8 * (max_x - min_x + 1) for _ in range(8 * (max_y - min_y + 1))]
|
|
for (x, y), (id, tile) in tilemap.items():
|
|
x_ = (x - min_x) * 8
|
|
y_ = (y - min_y) * 8
|
|
for i, row in enumerate(tile[1:-1]):
|
|
for j, c in enumerate(row[1:-1]):
|
|
chungus[i + y_][j + x_] = c
|
|
|
|
# for y, row in enumerate(chungus):
|
|
# print("".join(row))
|
|
|
|
big_chungus, sneks = rotate_find_sneks(chungus)
|
|
for snek in sneks:
|
|
remove_snek(snek)
|
|
|
|
part2 = 0
|
|
for row in big_chungus:
|
|
for c in row:
|
|
if c == "#":
|
|
part2 += 1
|
|
print("Part 2:", part2)
|