1541 Drive speed improvements

Specialized drive read loops for the most common cases, triggers a vast speed improvement in some scenarios. Improved saving speed. Removed some more code that's not really required right now.
This commit is contained in:
Alexander Martinelle 2019-09-03 23:31:46 +02:00
parent bddc9a7d29
commit 3978ef2165
5 changed files with 259 additions and 55 deletions

View file

@ -358,6 +358,7 @@ void Drive::Reset()
#if defined(EXPERIMENTALZERO) #if defined(EXPERIMENTALZERO)
LED = false; LED = false;
cyclesForBit = 0; cyclesForBit = 0;
UE7Counter = 16;
#endif #endif
headTrackPos = 18*2; // Start with the head over track 19 (Very later Vorpal ie Cakifornia Games) need to have had the last head movement -ve headTrackPos = 18*2; // Start with the head over track 19 (Very later Vorpal ie Cakifornia Games) need to have had the last head movement -ve
CLOCK_SEL_AB = 3; // Track 18 will use speed zone 3 (encoder/decoder (ie UE7Counter) clocked at 1.2307Mhz) CLOCK_SEL_AB = 3; // Track 18 will use speed zone 3 (encoder/decoder (ie UE7Counter) clocked at 1.2307Mhz)
@ -568,20 +569,71 @@ bool Drive::Update()
#define min(a,b) (((a) < (b)) ? (a) : (b)) #define min(a,b) (((a) < (b)) ? (a) : (b))
#define max(a,b) (((a) > (b)) ? (a) : (b)) #define max(a,b) (((a) > (b)) ? (a) : (b))
void Drive::DriveLoopRead() void Drive::DriveLoopReadNoFluxNoCycles()
{
unsigned int cycles = 16;
fluxReversalCyclesLeft -= 16;
cyclesLeftForBit -= 16;
while (true)
{
if (cycles < UE7Counter)
{
UE7Counter -= cycles;
cycles = 0;
return;
}
cycles -= UE7Counter;
UE7Counter = 16 - CLOCK_SEL_AB; // A and B inputs of UE7 come from the VIA's CLOCK SEL A/B outputs (ie PB5/6) ie preload the encoder/decoder clock for the current density settings.
// The decoder consists of UF4 and UE5A. The ecoder has two outputs, Pin 1 of UE5A is the serial data output and pin 2 of UF4 (output B) is the serial clock output.
++UF4Counter &= 0xf; // Clock and clamp UF4.
// The UD2 read shift register is clocked by serial clock (the rising edge of encoder/decoder's UF4 B output (serial clock))
// - ie on counts 2, 6, 10 and 14 (2 is the only count that outputs a 1 into readShiftRegister as the MSB bits of the count NORed together for other values are 0)
if ((UF4Counter & 0x3) == 2)
{
readShiftRegister <<= 1;
readShiftRegister |= (UF4Counter == 2); // Emulate UE5A and only shift in a 1 when pins 6 (output C) and 7 (output D) (bits 2 and 3 of UF4Counter are 0. ie the first count of the bit cell)
writeShiftRegister <<= 1;
// Note: SYNC can only trigger during reading as R/!W line is one of UC2's inputs.
if (((readShiftRegister & 0x3ff) == 0x3ff)) // if the last 10 bits are 1s then SYNC
{
UE3Counter = 0; // Phase lock on to byte boundary
m_pVIA->GetPortB()->SetInput(0x80, false); // PB7 active low SYNC
}
else
{
m_pVIA->GetPortB()->SetInput(0x80, true); // SYNC not asserted if not following the SYNC bits
UE3Counter++;
}
}
// UC5B (NOR used to invert UF4's output B serial clock) output high when UF4 counts 0,1,4,5,8,9,12 and 13
else if (((UF4Counter & 2) == 0) && (UE3Counter == 8)) // Phase locked on to byte boundary
{
UE3Counter = 0;
SO = (m_pVIA->GetFCR() & m6522::FCR_CA2_OUTPUT_MODE0) != 0; // bit 2 of the FCR indicates "Byte Ready Active" turned on or not.
writeShiftRegister = (u8)(readShiftRegister & 0xff);
m_pVIA->GetPortA()->SetInput(writeShiftRegister);
}
};
}
void Drive::DriveLoopReadNoFlux()
{ {
unsigned int minCycles; unsigned int minCycles;
unsigned int cycles = 0; unsigned int cycles = 16;
fluxReversalCyclesLeft -= 16;
while (true) while (true)
{ {
minCycles = min(min(cyclesLeftForBit, fluxReversalCyclesLeft), 16 - max(UE7Counter, cycles)); minCycles = min(min(cyclesLeftForBit, cycles), UE7Counter);
cyclesLeftForBit -= minCycles; cyclesLeftForBit -= minCycles;
fluxReversalCyclesLeft -= minCycles; cycles -= minCycles;
cycles += minCycles; UE7Counter -= minCycles;
UE7Counter += minCycles;
if (cycles == 16) if (cycles == 0)
return; return;
if (cyclesLeftForBit == 0) if (cyclesLeftForBit == 0)
@ -605,14 +657,9 @@ void Drive::DriveLoopRead()
} }
} }
if (fluxReversalCyclesLeft == 0)//Not entirely right, a flux reversal will be skipped if a bit read was going to happen if (UE7Counter == 0x0) // The count carry (bit 4) clocks UF4.
{ {
ResetEncoderDecoder(2 * 16, /*25 * 16*/23 * 16); // Trigger a random noise generated zero crossing and start seeing more anywhere between 2us and 25us after this one. UE7Counter = 16 - CLOCK_SEL_AB; // A and B inputs of UE7 come from the VIA's CLOCK SEL A/B outputs (ie PB5/6) ie preload the encoder/decoder clock for the current density settings.
}
if (UE7Counter == 0x10) // The count carry (bit 4) clocks UF4.
{
UE7Counter = CLOCK_SEL_AB; // A and B inputs of UE7 come from the VIA's CLOCK SEL A/B outputs (ie PB5/6) ie preload the encoder/decoder clock for the current density settings.
// The decoder consists of UF4 and UE5A. The ecoder has two outputs, Pin 1 of UE5A is the serial data output and pin 2 of UF4 (output B) is the serial clock output. // The decoder consists of UF4 and UE5A. The ecoder has two outputs, Pin 1 of UE5A is the serial data output and pin 2 of UF4 (output B) is the serial clock output.
++UF4Counter &= 0xf; // Clock and clamp UF4. ++UF4Counter &= 0xf; // Clock and clamp UF4.
// The UD2 read shift register is clocked by serial clock (the rising edge of encoder/decoder's UF4 B output (serial clock)) // The UD2 read shift register is clocked by serial clock (the rising edge of encoder/decoder's UF4 B output (serial clock))
@ -644,21 +691,32 @@ void Drive::DriveLoopRead()
m_pVIA->GetPortA()->SetInput(writeShiftRegister); m_pVIA->GetPortA()->SetInput(writeShiftRegister);
} }
} }
}; };
} }
void Drive::DriveLoopReadNoCycles()
void Drive::DriveLoopWrite()
{ {
const unsigned int cycleStep = 16 - CLOCK_SEL_AB; unsigned int minCycles;
unsigned int cycles = 16 - UE7Counter; unsigned int cycles = 16;
while(cycles < 16)
cyclesLeftForBit -= 16;
while (true)
{ {
//No check is required. This loops is all about the UE7Counter. minCycles = min(cycles, min(UE7Counter, fluxReversalCyclesLeft));
//if (UE7Counter == 0x10) // The count carry (bit 4) clocks UF4. fluxReversalCyclesLeft -= minCycles;
cycles -= minCycles;
UE7Counter -= minCycles;
if (cycles == 0)
return;
if (fluxReversalCyclesLeft == 0)//Not entirely right, a flux reversal will be skipped if a bit read was going to happen
{ {
UE7Counter = CLOCK_SEL_AB; // A and B inputs of UE7 come from the VIA's CLOCK SEL A/B outputs (ie PB5/6) ie preload the encoder/decoder clock for the current density settings. ResetEncoderDecoder(2 * 16, /*25 * 16*/23 * 16); // Trigger a random noise generated zero crossing and start seeing more anywhere between 2us and 25us after this one.
}
if (UE7Counter == 0x0) // The count carry (bit 4) clocks UF4.
{
UE7Counter = 16 - CLOCK_SEL_AB; // A and B inputs of UE7 come from the VIA's CLOCK SEL A/B outputs (ie PB5/6) ie preload the encoder/decoder clock for the current density settings.
// The decoder consists of UF4 and UE5A. The ecoder has two outputs, Pin 1 of UE5A is the serial data output and pin 2 of UF4 (output B) is the serial clock output. // The decoder consists of UF4 and UE5A. The ecoder has two outputs, Pin 1 of UE5A is the serial data output and pin 2 of UF4 (output B) is the serial clock output.
++UF4Counter &= 0xf; // Clock and clamp UF4. ++UF4Counter &= 0xf; // Clock and clamp UF4.
// The UD2 read shift register is clocked by serial clock (the rising edge of encoder/decoder's UF4 B output (serial clock)) // The UD2 read shift register is clocked by serial clock (the rising edge of encoder/decoder's UF4 B output (serial clock))
@ -668,28 +726,166 @@ void Drive::DriveLoopWrite()
readShiftRegister <<= 1; readShiftRegister <<= 1;
readShiftRegister |= (UF4Counter == 2); // Emulate UE5A and only shift in a 1 when pins 6 (output C) and 7 (output D) (bits 2 and 3 of UF4Counter are 0. ie the first count of the bit cell) readShiftRegister |= (UF4Counter == 2); // Emulate UE5A and only shift in a 1 when pins 6 (output C) and 7 (output D) (bits 2 and 3 of UF4Counter are 0. ie the first count of the bit cell)
SetNextBit((writeShiftRegister & 0x80));
writeShiftRegister <<= 1; writeShiftRegister <<= 1;
// Note: SYNC can only trigger during reading as R/!W line is one of UC2's inputs. // Note: SYNC can only trigger during reading as R/!W line is one of UC2's inputs.
UE3Counter++; if (((readShiftRegister & 0x3ff) == 0x3ff)) // if the last 10 bits are 1s then SYNC
{
UE3Counter = 0; // Phase lock on to byte boundary
m_pVIA->GetPortB()->SetInput(0x80, false); // PB7 active low SYNC
}
else
{
m_pVIA->GetPortB()->SetInput(0x80, true); // SYNC not asserted if not following the SYNC bits
UE3Counter++;
}
} }
// UC5B (NOR used to invert UF4's output B serial clock) output high when UF4 counts 0,1,4,5,8,9,12 and 13 // UC5B (NOR used to invert UF4's output B serial clock) output high when UF4 counts 0,1,4,5,8,9,12 and 13
else if (((UF4Counter & 2) == 0) && (UE3Counter == 8)) // Phase locked on to byte boundary else if (((UF4Counter & 2) == 0) && (UE3Counter == 8)) // Phase locked on to byte boundary
{ {
UE3Counter = 0; UE3Counter = 0;
SO = (m_pVIA->GetFCR() & m6522::FCR_CA2_OUTPUT_MODE0) != 0; // bit 2 of the FCR indicates "Byte Ready Active" turned on or not. SO = (m_pVIA->GetFCR() & m6522::FCR_CA2_OUTPUT_MODE0) != 0; // bit 2 of the FCR indicates "Byte Ready Active" turned on or not.
writeShiftRegister = m_pVIA->GetPortA()->GetOutput(); writeShiftRegister = (u8)(readShiftRegister & 0xff);
} m_pVIA->GetPortA()->SetInput(writeShiftRegister);
if ((16-cycles) < cycleStep)
{
UE7Counter += 16 - cycles;
return;
} }
} }
UE7Counter += cycleStep; };
cycles += cycleStep; }
void Drive::DriveLoopRead()
{
if (fluxReversalCyclesLeft > 16 && cyclesLeftForBit > 16)
{
DriveLoopReadNoFluxNoCycles();
return;
}
if (fluxReversalCyclesLeft > 16)
{
DriveLoopReadNoFlux();
return;
}
if (cyclesLeftForBit > 16)
{
DriveLoopReadNoCycles();
return;
}
unsigned int minCycles;
unsigned int cycles = 16;
while (true)
{
minCycles = min(min(cyclesLeftForBit, cycles), min(UE7Counter, fluxReversalCyclesLeft));
cyclesLeftForBit -= minCycles;
fluxReversalCyclesLeft -= minCycles;
cycles -= minCycles;
UE7Counter -= minCycles;
if (cycles == 0)
return;
if (cyclesLeftForBit == 0)
{
//which is faster? single loop ceil check or the 3 lines below?
float fn = 2.0f * cyclesPerBit - cyclesForBit;
cyclesLeftForBit = (int)fn;
cyclesForBit = cyclesPerBit;
if (fn != (float)cyclesLeftForBit) {
++cyclesLeftForBit;
++cyclesForBit;
}
//cyclesForBit -= cyclesPerBit;
//cyclesLeftForBit = ceil(cyclesPerBit - cyclesForBit);
//cyclesForBit += cyclesLeftForBit;
if (GetNextBit())
{
ResetEncoderDecoder(18 * 16, /*20 * 16*/ 2 * 16);
}
}
if (fluxReversalCyclesLeft == 0)//Not entirely right, a flux reversal will be skipped if a bit read was going to happen
{
ResetEncoderDecoder(2 * 16, /*25 * 16*/23 * 16); // Trigger a random noise generated zero crossing and start seeing more anywhere between 2us and 25us after this one.
}
if (UE7Counter == 0x0) // The count carry (bit 4) clocks UF4.
{
UE7Counter = 16-CLOCK_SEL_AB; // A and B inputs of UE7 come from the VIA's CLOCK SEL A/B outputs (ie PB5/6) ie preload the encoder/decoder clock for the current density settings.
// The decoder consists of UF4 and UE5A. The ecoder has two outputs, Pin 1 of UE5A is the serial data output and pin 2 of UF4 (output B) is the serial clock output.
++UF4Counter &= 0xf; // Clock and clamp UF4.
// The UD2 read shift register is clocked by serial clock (the rising edge of encoder/decoder's UF4 B output (serial clock))
// - ie on counts 2, 6, 10 and 14 (2 is the only count that outputs a 1 into readShiftRegister as the MSB bits of the count NORed together for other values are 0)
//if ((UF4Counter & 0x3) == 2)
if (UF4Counter == 2 || UF4Counter == 6) //You'd think the bit operation should be faster...
{
readShiftRegister <<= 1;
readShiftRegister |= (UF4Counter == 2); // Emulate UE5A and only shift in a 1 when pins 6 (output C) and 7 (output D) (bits 2 and 3 of UF4Counter are 0. ie the first count of the bit cell)
writeShiftRegister <<= 1;
// Note: SYNC can only trigger during reading as R/!W line is one of UC2's inputs.
if (((readShiftRegister & 0x3ff) == 0x3ff)) // if the last 10 bits are 1s then SYNC
{
UE3Counter = 0; // Phase lock on to byte boundary
m_pVIA->GetPortB()->SetInput(0x80, false); // PB7 active low SYNC
}
else
{
m_pVIA->GetPortB()->SetInput(0x80, true); // SYNC not asserted if not following the SYNC bits
UE3Counter++;
}
}
// UC5B (NOR used to invert UF4's output B serial clock) output high when UF4 counts 0,1,4,5,8,9,12 and 13
else if (((UF4Counter & 2) == 0) && (UE3Counter == 8)) // Phase locked on to byte boundary
{
UE3Counter = 0;
SO = (m_pVIA->GetFCR() & m6522::FCR_CA2_OUTPUT_MODE0) != 0; // bit 2 of the FCR indicates "Byte Ready Active" turned on or not.
writeShiftRegister = (u8)(readShiftRegister & 0xff);
m_pVIA->GetPortA()->SetInput(writeShiftRegister);
}
}
};
}
void Drive::DriveLoopWrite()
{
unsigned int cycles = 16;
while(true)
{
if (cycles < UE7Counter)
{
UE7Counter -= cycles;
cycles = 0;
return;
}
cycles -= UE7Counter;
UE7Counter = 16 - CLOCK_SEL_AB; // A and B inputs of UE7 come from the VIA's CLOCK SEL A/B outputs (ie PB5/6) ie preload the encoder/decoder clock for the current density settings.
// The decoder consists of UF4 and UE5A. The ecoder has two outputs, Pin 1 of UE5A is the serial data output and pin 2 of UF4 (output B) is the serial clock output.
++UF4Counter &= 0xf; // Clock and clamp UF4.
// The UD2 read shift register is clocked by serial clock (the rising edge of encoder/decoder's UF4 B output (serial clock))
// - ie on counts 2, 6, 10 and 14 (2 is the only count that outputs a 1 into readShiftRegister as the MSB bits of the count NORed together for other values are 0)
if ((UF4Counter & 0x3) == 2)
{
readShiftRegister <<= 1;
readShiftRegister |= (UF4Counter == 2); // Emulate UE5A and only shift in a 1 when pins 6 (output C) and 7 (output D) (bits 2 and 3 of UF4Counter are 0. ie the first count of the bit cell)
SetNextBit((writeShiftRegister & 0x80));
writeShiftRegister <<= 1;
// Note: SYNC can only trigger during reading as R/!W line is one of UC2's inputs.
UE3Counter++;
}
// UC5B (NOR used to invert UF4's output B serial clock) output high when UF4 counts 0,1,4,5,8,9,12 and 13
else if (((UF4Counter & 2) == 0) && (UE3Counter == 8)) // Phase locked on to byte boundary
{
UE3Counter = 0;
SO = (m_pVIA->GetFCR() & m6522::FCR_CA2_OUTPUT_MODE0) != 0; // bit 2 of the FCR indicates "Byte Ready Active" turned on or not.
writeShiftRegister = m_pVIA->GetPortA()->GetOutput();
}
} }
} }
#endif #endif

View file

@ -51,6 +51,9 @@ public:
#if defined(EXPERIMENTALZERO) #if defined(EXPERIMENTALZERO)
void DriveLoopWrite(); void DriveLoopWrite();
void DriveLoopRead(); void DriveLoopRead();
void DriveLoopReadNoFluxNoCycles();
void DriveLoopReadNoFlux();
void DriveLoopReadNoCycles();
#endif #endif
void Insert(DiskImage* diskImage); void Insert(DiskImage* diskImage);
@ -69,7 +72,7 @@ private:
int32_t localSeed; int32_t localSeed;
inline void ResetEncoderDecoder(unsigned int min, unsigned int /*max*/span) inline void ResetEncoderDecoder(unsigned int min, unsigned int /*max*/span)
{ {
UE7Counter = CLOCK_SEL_AB; // A and B inputs of UE7 come from the VIA's CLOCK SEL A/B outputs (ie PB5/6) UE7Counter = 16 - CLOCK_SEL_AB; // A and B inputs of UE7 come from the VIA's CLOCK SEL A/B outputs (ie PB5/6)
UF4Counter = 0; UF4Counter = 0;
localSeed = ((localSeed * 1103515245) + 12345) & 0x7fffffff; localSeed = ((localSeed * 1103515245) + 12345) & 0x7fffffff;
fluxReversalCyclesLeft = (span) * (localSeed >> 11) + min; fluxReversalCyclesLeft = (span) * (localSeed >> 11) + min;

View file

@ -93,6 +93,7 @@ extern u16 pc;
u8 read6502_1581(u16 address) u8 read6502_1581(u16 address)
{ {
u8 value = 0; u8 value = 0;
#if not defined(EXPERIMENTALZERO)
if (address & 0x8000) if (address & 0x8000)
{ {
value = roms.Read1581(address); value = roms.Read1581(address);
@ -115,6 +116,7 @@ u8 read6502_1581(u16 address)
{ {
value = address >> 8; // Empty address bus value = address >> 8; // Empty address bus
} }
#endif
return value; return value;
} }
@ -127,6 +129,7 @@ u8 peek6502_1581(u16 address)
void write6502_1581(u16 address, const u8 value) void write6502_1581(u16 address, const u8 value)
{ {
#if not defined(EXPERIMENTALZERO)
if (address & 0x8000) if (address & 0x8000)
{ {
return; return;
@ -145,6 +148,7 @@ void write6502_1581(u16 address, const u8 value)
{ {
s_u8Memory[address & 0x1fff] = value; s_u8Memory[address & 0x1fff] = value;
} }
#endif
} }
static void CIAPortA_OnPortOut(void* pUserData, unsigned char status) static void CIAPortA_OnPortOut(void* pUserData, unsigned char status)

View file

@ -277,7 +277,7 @@ public:
RPI_SetGpioPinFunction((rpi_gpio_pin_t)PIGPIO_OUT_SRQ, FS_OUTPUT); RPI_SetGpioPinFunction((rpi_gpio_pin_t)PIGPIO_OUT_SRQ, FS_OUTPUT);
} }
#if not defined(EXPERIMENTALZERO)
// Set up audio. // Set up audio.
write32(CM_PWMDIV, CM_PASSWORD + 0x2000); write32(CM_PWMDIV, CM_PASSWORD + 0x2000);
write32(CM_PWMCTL, CM_PASSWORD + CM_ENAB + CM_SRC_OSCILLATOR); // Use Default 100MHz Clock write32(CM_PWMCTL, CM_PASSWORD + CM_ENAB + CM_SRC_OSCILLATOR); // Use Default 100MHz Clock
@ -285,7 +285,7 @@ public:
write32(PWM_RNG1, 0x1B4); // 8bit 44100Hz Mono write32(PWM_RNG1, 0x1B4); // 8bit 44100Hz Mono
write32(PWM_RNG2, 0x1B4); write32(PWM_RNG2, 0x1B4);
write32(PWM_CTL, PWM_USEF2 + PWM_PWEN2 + PWM_USEF1 + PWM_PWEN1 + PWM_CLRF1); write32(PWM_CTL, PWM_USEF2 + PWM_PWEN2 + PWM_USEF1 + PWM_PWEN1 + PWM_CLRF1);
#endif
int buttonCount = sizeof(ButtonPinFlags) / sizeof(unsigned); int buttonCount = sizeof(ButtonPinFlags) / sizeof(unsigned);
for (index = 0; index < buttonCount; ++index) for (index = 0; index < buttonCount; ++index)

View file

@ -101,7 +101,9 @@ u8 s_u8Memory[0xc000];
int numberOfUSBMassStorageDevices = 0; int numberOfUSBMassStorageDevices = 0;
DiskCaddy diskCaddy; DiskCaddy diskCaddy;
Pi1541 pi1541; Pi1541 pi1541;
#if not defined(EXPERIMENTALZERO)
Pi1581 pi1581; Pi1581 pi1581;
#endif
CEMMCDevice m_EMMC; CEMMCDevice m_EMMC;
Screen screen; Screen screen;
ScreenLCD* screenLCD = 0; ScreenLCD* screenLCD = 0;
@ -118,8 +120,9 @@ bool USBKeyboardDetected = false;
bool selectedViaIECCommands = false; bool selectedViaIECCommands = false;
u16 pc; u16 pc;
#if not defined(EXPERIMENTALZERO)
SpinLock core0RefreshingScreen; SpinLock core0RefreshingScreen;
#endif
unsigned int screenWidth = 1024; unsigned int screenWidth = 1024;
unsigned int screenHeight = 768; unsigned int screenHeight = 768;
@ -609,6 +612,7 @@ EmulatingMode BeginEmulating(FileBrowser* fileBrowser, const char* filenameForIc
DiskImage* diskImage = diskCaddy.SelectFirstImage(); DiskImage* diskImage = diskCaddy.SelectFirstImage();
if (diskImage) if (diskImage)
{ {
#if not defined(EXPERIMENTALZERO)
if (diskImage->IsD81()) if (diskImage->IsD81())
{ {
pi1581.Insert(diskImage); pi1581.Insert(diskImage);
@ -617,6 +621,7 @@ EmulatingMode BeginEmulating(FileBrowser* fileBrowser, const char* filenameForIc
return EMULATING_1581; return EMULATING_1581;
} }
else else
#endif
{ {
pi1541.drive.Insert(diskImage); pi1541.drive.Insert(diskImage);
fileBrowser->DisplayDiskInfo(diskImage, filenameForIcon); fileBrowser->DisplayDiskInfo(diskImage, filenameForIcon);
@ -668,7 +673,9 @@ void GlobalSetDeviceID(u8 id)
deviceID = id; deviceID = id;
m_IEC_Commands.SetDeviceId(id); m_IEC_Commands.SetDeviceId(id);
pi1541.SetDeviceID(id); pi1541.SetDeviceID(id);
#if not defined(EXPERIMENTALZERO)
pi1581.SetDeviceID(id); pi1581.SetDeviceID(id);
#endif
} }
void CheckAutoMountImage(EXIT_TYPE reset_reason , FileBrowser* fileBrowser) void CheckAutoMountImage(EXIT_TYPE reset_reason , FileBrowser* fileBrowser)
@ -712,10 +719,6 @@ EXIT_TYPE Emulate1541(FileBrowser* fileBrowser)
if (numberOfImagesMax > 10) if (numberOfImagesMax > 10)
numberOfImagesMax = 10; numberOfImagesMax = 10;
core0RefreshingScreen.Acquire();
diskCaddy.Display();
core0RefreshingScreen.Release();
inputMappings->directDiskSwapRequest = 0; inputMappings->directDiskSwapRequest = 0;
// Force an update on all the buttons now before we start emulation mode. // Force an update on all the buttons now before we start emulation mode.
IEC_Bus::ReadBrowseMode(); IEC_Bus::ReadBrowseMode();
@ -731,8 +734,6 @@ EXIT_TYPE Emulate1541(FileBrowser* fileBrowser)
pi1541.Reset(); // will call IEC_Bus::Reset(); pi1541.Reset(); // will call IEC_Bus::Reset();
IEC_Bus::OutputLED = false; IEC_Bus::OutputLED = false;
IEC_Bus::LetSRQBePulledHigh(); IEC_Bus::LetSRQBePulledHigh();
float avgTimer = 0.0f;
ctBefore = read32(ARM_SYSTIMER_CLO); ctBefore = read32(ARM_SYSTIMER_CLO);
//resetWhileEmulating = false; //resetWhileEmulating = false;
@ -756,7 +757,6 @@ EXIT_TYPE Emulate1541(FileBrowser* fileBrowser)
} }
bool buttonState = false; bool buttonState = false;
bool prevButtonState = false; bool prevButtonState = false;
while (true) while (true)
{ {
@ -1274,8 +1274,9 @@ void emulator()
IEC_Bus::Reset(); IEC_Bus::Reset();
IEC_Bus::LetSRQBePulledHigh(); IEC_Bus::LetSRQBePulledHigh();
#if not defined(EXPERIMENTALZERO)
core0RefreshingScreen.Acquire(); core0RefreshingScreen.Acquire();
#endif
IEC_Bus::WaitMicroSeconds(100); IEC_Bus::WaitMicroSeconds(100);
roms.ResetCurrentROMIndex(); roms.ResetCurrentROMIndex();
@ -1285,9 +1286,9 @@ void emulator()
fileBrowser->ClearSelections(); fileBrowser->ClearSelections();
fileBrowser->RefeshDisplay(); // Just redisplay the current folder. fileBrowser->RefeshDisplay(); // Just redisplay the current folder.
#if not defined(EXPERIMENTALZERO)
core0RefreshingScreen.Release(); core0RefreshingScreen.Release();
#endif
selectedViaIECCommands = false; selectedViaIECCommands = false;
inputMappings->Reset(); inputMappings->Reset();
@ -1590,7 +1591,7 @@ static void CheckOptions()
deviceID = (u8)options.GetDeviceID(); deviceID = (u8)options.GetDeviceID();
DEBUG_LOG("DeviceID = %d\r\n", deviceID); DEBUG_LOG("DeviceID = %d\r\n", deviceID);
#if not defined(EXPERIMENTALZERO)
const char* FontROMName = options.GetRomFontName(); const char* FontROMName = options.GetRomFontName();
if (FontROMName) if (FontROMName)
{ {
@ -1625,7 +1626,7 @@ static void CheckOptions()
//DEBUG_LOG("Read ROM %s from options\r\n", ROMName); //DEBUG_LOG("Read ROM %s from options\r\n", ROMName);
} }
} }
#endif
const char* ROMName1581 = options.GetRomName1581(); const char* ROMName1581 = options.GetRomName1581();
if (ROMName1581) if (ROMName1581)
{ {