
Saleae Analyzer SDK 1.1.8

1 Copyright 2011 Saleae LLC. All Rights Reserved.

Contents

Setting up an Analyzer Project .. 2

Visual Studio .. 3

Debugging an Analyzer with Visual Studio ...12

Linux ..14

Mac OSX..19

Build Script Based Project ...19

Debugging with GDB..22

XCode based Project..24

Running & Debugging your Analyzer ..31

Writing your Analyzer’s Code ..35

Analyzer Settings...36

{YourName}AnalyzerSettings.h..36

{YourName}AnalyzerSettings.cpp ...38

SimulationDataGenerator ...44

{YourName}SimulationDataGenerator.h ...44

{YourName}SimulationDataGenerator.cpp ...45

AnalyzerResults ...57

{YourName}AnalyzerResults.h ...57

{YourName}AnalyzerResults.cpp...58

Analyzer ..65

{YourName}Analyzer.h ..65

{YourName}Analyzer.cpp..65

Saleae Analyzer SDK 1.1.8

2 Copyright 2011 Saleae LLC. All Rights Reserved.

Setting up an Analyzer Project

This document is to split into two main parts. The first deals with setting up your analyzer project –

getting the build environment set up on Windows, Mac, and/or Linux.

Then second part deals with writing the code, and the details of the SDK.

Saleae Analyzer SDK 1.1.8

3 Copyright 2011 Saleae LLC. All Rights Reserved.

Visual Studio

This section deals with setting up a Visual Studio project from scratch. The SDK already includes a Visual

Studio project that should run build and run out of the box – but if you want the details this section is for

you.

In addition, the following section discusses how to automatical ly change all the source files to match the

name of your analyzer – which can be a nice way to get started on a new analyzer.

1. If you haven’t already, download the latest SaleaeAnalyzerSdk-1.1.x.zip file and extract to this to

your desktop, or other convenient location.

2. Launch VS2008 – we’re using the C++ express version.

http://www.microsoft.com/express/Downloads/ (as of the time of this writing, there is VS2008

tab still on the page).

a. File->New-Project

b. Visual C++; Win32

c. Win32 Project (under templates)

d. Name: {YourName}Analyzer (Example: SuperSerialAnalyzer)

e. Location: Desktop\SaleaeAnalyzerSdk-1.1.x\

f. Make sure Create directory for solution is not checked.

g. Press OK.

3. On the left-hand plane, click Application Settings

a. Under Application type, select DLL

b. Under Additional options, check Empty Project

c. Press Finish

http://www.microsoft.com/express/Downloads/

Saleae Analyzer SDK 1.1.8

4 Copyright 2011 Saleae LLC. All Rights Reserved.

4. Next, let’s get our source files in order. In the root of the SaleaeAnalyzerSdk folder there is a

folder called source, and a file called rename_analyzer.py, copy and paste both of these into

your new project folder.

Saleae Analyzer SDK 1.1.8

5 Copyright 2011 Saleae LLC. All Rights Reserved.

a. Automatically changing the file names and contents to match the name of your analyzer

is very helpful and saves a bunch of time and effort. The rename_analyzer.py script

does exactly this. Unfortunately to run it you’ll have to install Python 3.x. We’ll do that

now.

b. Go to http://www.python.org/download/ and download the latest 3.x Windows

installer, and install it.

c. We’ll want to add Python to our path environment variable.

 On Windows 7 or Windows Vista:

1. Start Menu->(right click on) Computer->Properties

2. Choose Advanced System Settings. It’ll be on the left sidebar.

3. Click the Environment Variables… button at the bottom of the Advanced

tab.

4. Under System Variables, scroll down and double click the variable Path.

5. At the end of the Variable value string, add ;C:\Python3x (a semicolon,

and the absolute path of your Python installation)

 On Windows XP:

1. Right click on My Computer, and then click Properties.

2. Click Environment variables, on the Advanced tab.

http://www.python.org/download/

Saleae Analyzer SDK 1.1.8

6 Copyright 2011 Saleae LLC. All Rights Reserved.

3. Under System Variables, scroll down and double click the variable Path.

4. At the end of the Variable value string, add ;C:\Python3x (a semicolon,

and the absolute path of your Python installation)

d. Now we’ll run the rename_analyzer.py script. Open a console (Start Menu ->Run, type

cmd, press enter (Windows XP), or Start Menu->Search programs and files (text box),

type cmd and press enter (Windows Vista & 7).

 Navigate to your new project folder: cd Desktop\SaleaeAnalyzerSdk-

1.1.x\YourProject

 Type: python rename_analyzer.py

 Follow the instructions – enter your analyzer name (this should match your

project name you created earlier). Do not enter “Analyzer” at the end – this is

implied, and will be added automatically. For example, for SimpleSerialAnalyzer,

enter SimpleSerial.

 Enter the title to display in the Add Analyzer dropdown in the Logic software.

This is really easy to change later.

Saleae Analyzer SDK 1.1.8

7 Copyright 2011 Saleae LLC. All Rights Reserved.

e. Close the console, and open the source folder inside your project folder. Notice that the

file names now match your project. Internal changes have also been made – class

names, etc.

5. Next we’ll add our source files to Visual Studio

a. Under Solution Explorer, delete the folders Header Files and Resource Files. We won’t

be using them.

b. Right click on Source Files and choose Add->Existing Item.

c. Navigate to your source file, and select everything, including the headers

Saleae Analyzer SDK 1.1.8

8 Copyright 2011 Saleae LLC. All Rights Reserved.

6. Now we must tell Visual Studio where to look for the SDK’s header files.

a. Right click on the project name, and select Properties.

b. In the Configuration: drop-down, choose All Configurations (This saves us from needing

to set it up for Release and Debug modes separately.)

c. Under C/C++, select the General Item.

d. In Additional Include Directories, type $(ProjectDir)..\include

Saleae Analyzer SDK 1.1.8

9 Copyright 2011 Saleae LLC. All Rights Reserved.

7. Next, let’s point Visual Studio to the Analyzer.dll file we’ll be linking against. If you are building

for 64-bit Logic software, you will link against Analyzer64.dll instead.

a. Expand the Linker item and select General.

b. Under Additional Library Directories enter $(ProjectDir)..\lib

c. Under the Linker item, select Input.

Saleae Analyzer SDK 1.1.8

10 Copyright 2011 Saleae LLC. All Rights Reserved.

d. Under Additional Dependencies enter Analyzer.lib or Analyzer64.lib depending on your

build platform

Ok! At this point everything is set up and you should be able to build and develop your code. You

should be able to build for release, or debug. Use debug for development (see further down for how to

debug), but always use release for real world use as it will run much faster.

Saleae Analyzer SDK 1.1.8

11 Copyright 2011 Saleae LLC. All Rights Reserved.

8. Note: For 64-bit you need to change the build target to the x64 platform. Steps on how to

change to x64: http://msdn.microsoft.com/en-us/library/ms185328(v=vs.90).aspx

http://msdn.microsoft.com/en-us/library/ms185328(v=vs.90).aspx

Saleae Analyzer SDK 1.1.8

12 Copyright 2011 Saleae LLC. All Rights Reserved.

Debugging an Analyzer with Visual Studio

Now let’s debug your project. You’ll need to have the Logic software installed, and typically the same or

higher version as the SDK you’re using. We’ll try to maintain binary compatibility in new releases to the

extent possible, but there may be occasional breaking changes.

1. Launch the Logic software

a. Options->Preferences

b. Under Search this path for Analyzer Plugins browse to the Debug (or Release) folder in

your project.

c. Click Save and then close the Logic software.

2. Next, we need to tell Visual Studio to use the Logic software in its debug session.

a. In Visual Studio, right click in the Project item (under Solution Explorer) and select

Properties.

b. Click the Debugging Item

c. Under Command click in the field, click the down arrow that appears, and select

Browse…

d. Navigate to the Logic.exe program. This is typically located at C:\Program Files\Saleae

LLC (Note that the older 1.0.33 version, if it is installed, is located in the folder

C:\Program Files\Logic – be sure not to accidently use this version).

Saleae Analyzer SDK 1.1.8

13 Copyright 2011 Saleae LLC. All Rights Reserved.

e. Press OK.

3. Debug the application (F5). This will launch the Logic software. If all has gone well, you should

be able to see your analyzer in the analyzers drop down list.

To make sure debugging is working, put a breakpoint in your Analyzer’s constructor. Then, from the

Logic software, select your analyzer from the list. Your breakpoint should fire -- you’re off and running!

Saleae Analyzer SDK 1.1.8

14 Copyright 2011 Saleae LLC. All Rights Reserved.

Linux

1. If you haven't already, download and extract the SaleaeAnalyzerSdk-1.1.x to your desktop, or

other convenient location.

2. Inside the SaleaeAnalyzerSdk-1.1.x folder, create a new folder for your new analyzer project.

Name it something like MyAnalyzer, SuperSerialAnalyzer, etc.

3. From the root of SaleaeAnalyzerSdk-1.1.x folder, copy rename_analyzer.py, build_analyzer.py,

and the source folder. Paste these inside your new project folder.

Saleae Analyzer SDK 1.1.8

15 Copyright 2011 Saleae LLC. All Rights Reserved.

4. Next, we'll modify the source files so their names -- and everything in them -- reflect your new

analyzer name. Otherwise it’s a bit of a pain to modify by hand.

a. Open a terminal (console) and navigate to your MyAnalyzer folder. (typically cd

Desktop\SaleaeAnalyzerSdk-1.1.x\MyAnalyzer)

b. Type python rename_analyzer.py

Saleae Analyzer SDK 1.1.8

16 Copyright 2011 Saleae LLC. All Rights Reserved.

c. You will be prompted for the name of your analyzer – be sure to enter this without the

Analyzer suffix; this will be added automatically. For example, for MyAwesomeAnalyzer,

enter MyAwesome. Also note that this needs to be a valid variable name, so it should

be one word.

d. Next you will be prompted for the menu title to display in the Add Analyzer drop down

menu in the Logic software. This is really easy to change later, so don’t worry about it

too much. For example, you could enter Joe’s Analyzer

Saleae Analyzer SDK 1.1.8

17 Copyright 2011 Saleae LLC. All Rights Reserved.

e. The script should have renamed your project files in your source folder, as well as

changed their contents to match your analyzer's name.

5. Lastly, build the analyzer with the build_analyzer build script. At the command line, type python

build_analyzer.py

Next, let’s setup Logic to find your new analyzer

1. Launch the Logic software.

2. Select Options->Preferences

3. Under Developer, click Browse. Navigate new analyzer project’s debug (or release) folder, at

SaleaeAnalyzerSdk-1.1.x/ MyAnalyzer/debug

4. Press Save, and then close the Logic software.

5. Launch the Logic software again. Your analyzer should show up the Add Analyzer drop-down

list.

Lastly, let’s debug our new analyzer with GDB

Saleae Analyzer SDK 1.1.8

18 Copyright 2011 Saleae LLC. All Rights Reserved.

1. Open a terminal (console)

2. Run GDB on the Logic application: type something like gdb

/Home/YourUserName/Desktop/Logic-1.1.x/Logic

3. Set a breakpoint to get fired when your analyzer is loaded: type break

MyAnalyzer::WorkerThread

a. Because your analyzer hasn’t been loaded yet, GDB will notify you that it can’t find this

function, and ask if you want to automatically set this breakpoint if a library with a

matching function is loaded in the future. Type y <enter>

4. Launch the application. Type run

5. Now select your analyzer from the Add Analyzer drop-down list, and start a collection. GDB

should break execution upon entering your WorkerThread function.

6. You can now type step to single step, and continue to resume running.

More in-depth use of GDB is outside the scope of this document.

Saleae Analyzer SDK 1.1.8

19 Copyright 2011 Saleae LLC. All Rights Reserved.

Mac OSX

Build Script Based Project

1. If you haven’t already, download and extract SaleaeAnalyzerSdk-1.1.x to your desktop, or to

another convenient location.

2. Decide on the name of your project -- MyAnalyzer, SuperSerialAnalyzer, etc. Open the

SaleaeAnalyzerSdk-1.1.x folder and create a new folder with this name. We’ll call ours

MyAnalyzer

3. Select the source folder, and the files build_analyzer.py and rename_analyzer.py. Copy and

paste these into your new analyzer folder.

Saleae Analyzer SDK 1.1.8

20 Copyright 2011 Saleae LLC. All Rights Reserved.

4. Open a terminal (under Applications/Utilities) and navigate to your new analyzer folder. Type

something like cd Desktop\SaleaeAnalyzerSdk-1.1.5\MyAnalyzer

5. Next we’ll rename and modify the source files so they will be all set up for your analyzer. We’ll

use the build_analyzer.py script to do this.

6. Type python rename_analyzer.py

Saleae Analyzer SDK 1.1.8

21 Copyright 2011 Saleae LLC. All Rights Reserved.

7. Follow the prompts

a. You will be prompted for the name of your analyzer – be sure to enter this without the

Analyzer suffix; this will be added automatically. For example, for MyAwesomeAnalyzer,

enter MyAwesome. Also note that this needs to be a valid variable name, so it should

be one word.

b. Next you will be prompted for the menu title to display in the Add Analyzer drop down

menu in the Logic software. This is really easy to change later, so don’t worry about it

too much. For example, you could enter Joe’s Analyzer

c. The script should have renamed your project files in your source folder, as well as

changed their contents to match your analyzer's name.

8. Next we’ll attempt to build the project. Type python build_analyzer.py

Saleae Analyzer SDK 1.1.8

22 Copyright 2011 Saleae LLC. All Rights Reserved.

Your analyzer should now be built. Let’s try to run it from the Logic software.

6. Launch the Logic software.

7. Select Options->Preferences

8. Under Developer, click Browse. Navigate new analyzer project’s debug (or release) folder, at

SaleaeAnalyzerSdk-1.1.x/ MyAnalyzer/debug

9. Press Save, and then close the Logic software.

10. Launch the Logic software again. Your analyzer should show up the Add Analyzer drop-down

list.

Debugging with GDB

7. Open a terminal (under Applications/Utilities)

8. Run GDB on the Logic application: type gdb /Applications/Logic.app/Contents/MacOS/Logic

Saleae Analyzer SDK 1.1.8

23 Copyright 2011 Saleae LLC. All Rights Reserved.

9. Set a breakpoint to get fired when your analyzer is loaded: type break

MyAnalyzer::WorkerThread

a. Because your analyzer hasn’t been loaded yet, GDB will notify you that it can’t find this

function, and ask if you want to automatically set this breakpoint if a library with a

matching function is loaded in the future. Type y <enter>

10. Launch the application. Type run

11. Now select your analyzer from the Add Analyzer drop-down list, and start a collection. GDB

should break execution upon entering your WorkerThread function.

Saleae Analyzer SDK 1.1.8

24 Copyright 2011 Saleae LLC. All Rights Reserved.

12. You can now type step to single step, and continue to resume running.

More in-depth use of GDB is outside the scope of this document. For a GUI based debugging solution,

we recommend using XCode.

XCode based Project

Note that in this walkthrough we are using XCode on Snow Leopard. Your experience may be somewhat

different if you are in Tiger or Leopard.

1. Start XCode

2. From the File menu, choose New Project

3. For Choose a template for your new Project select Other, Empty Project.

4. Choose a name for your analyzer, such as MyAnalyzer, SuperSerialAnalyzer, etc. It should be one

word. Specify this as the project’s name.

5. Save the project in the root of the SaleaeAnalyzerSdk-1.1.x folder. This will create a folder called

YourProjectName.

Close XCode. Next we’ll get our source files in order.

Saleae Analyzer SDK 1.1.8

25 Copyright 2011 Saleae LLC. All Rights Reserved.

1. With Finder, open the SaleaeAnalyzerSdk-1.1.x folder. Select the source folder, and the file

rename_analyzer.py, and copy and paste these into your new analyzer project folder.

2. Launch Terminal. (This is in Application/Utilities)

3. Navigate to your analyzer folder by typing something like cd Desktop/SaleaeAnalyzerSdk-

1.1.x/MyAnalyzer

Saleae Analyzer SDK 1.1.8

26 Copyright 2011 Saleae LLC. All Rights Reserved.

4. Type python rename_analyzer.py and follow the prompts.

a. You will be prompted for the name of your analyzer – be sure to enter this without the

Analyzer suffix; this will be added automatically. For example, for

MyAwesomeAnalyzer, enter MyAwesome. Also note that this needs to be a valid

variable name, so it should be one word.

b. Next you will be prompted for the menu title to display in the Add Analyzer drop down

menu in the Logic software. This is really easy to change later, so don’t worry about it

too much. For example, you could enter Joe’s Analyzer

Saleae Analyzer SDK 1.1.8

27 Copyright 2011 Saleae LLC. All Rights Reserved.

c. The script should have renamed your project files in your source folder, as well as

changed their contents to match your analyzer's name.

Back to XCode

1. In your new project folder, double-click the XCode project. (starting XCode)

2. Under Groups & Files, right-click on Targets, and select Add->New Target

3. Select BCD, Dynamic Library template, and click Next.

Saleae Analyzer SDK 1.1.8

28 Copyright 2011 Saleae LLC. All Rights Reserved.

4. For Target Name, enter your analyzer’s name (MyAnalyzer for example). Click Finish.

5. This will open the Target Info window. Close this.

6. In the Groups & Files list, select the project item at the very top of the list. Right click and select

Add->Existing Files.

7. Navigate to your source folder and select all the files, including the headers. Click Add.

Saleae Analyzer SDK 1.1.8

29 Copyright 2011 Saleae LLC. All Rights Reserved.

8. The defaults should be fine. Click Add.

9. Select the project item (at the top of the list), and click the Info button on the main toolbar.

a. Click the Build tab.

b. Set Configuration to All Configurations, and set Show to All Settings

Saleae Analyzer SDK 1.1.8

30 Copyright 2011 Saleae LLC. All Rights Reserved.

c. Scroll down to Search Paths section

d. For Header Search Paths, enter ../include

e. Close the Project Info window.

10. Expand the Targets item until you see the Link Binary With Libraries item.

a. Right click on Link Binary With Libraries and select Add->Existing Files.

b. Navigate to and select libAnalyzer.dylib from lib folder in the SaleaeAnalyzerSdk-1.1.x

folder.

Saleae Analyzer SDK 1.1.8

31 Copyright 2011 Saleae LLC. All Rights Reserved.

c. Click Add, and except the defaults by click Add again.

From the Build menu (at the top of the screen), select Build. Your project should build completely.

Running & Debugging your Analyzer

1. Launch the Logic software.

Saleae Analyzer SDK 1.1.8

32 Copyright 2011 Saleae LLC. All Rights Reserved.

a. Select Options->Preferences

b. Under Developer, click Browse. Navigate new analyzer project’s debug (or release)

folder, at SaleaeAnalyzerSdk-1.1.x/ MyAnalyzer/build/debug

c. Press Save, and then close the Logic software.

d. Launch the Logic software again. Your analyzer should show up the Add Analyzer drop-

down list.

2. Bring up your analyzer project in XCode

a. Right click on the Executables item, and select Add->New Custom Executable.

Saleae Analyzer SDK 1.1.8

33 Copyright 2011 Saleae LLC. All Rights Reserved.

i. Executable Name: Logic

ii. Executable Path: /Applications/Logic.app (or similar)

iii. Click Finish.

b. From XCode, open the primary cpp file (MyAnalyzer.cpp or similar).

Saleae Analyzer SDK 1.1.8

34 Copyright 2011 Saleae LLC. All Rights Reserved.

c. Go down to the first line on WorkerThread and click in the margin to create a

breakpoint.

d. From the Build menu, select Build and Debug.

e. Select your new analyzer from the Add Analyzer drop-down.

 Start a data collection. XCode should break execution at your breakpoint.

Saleae Analyzer SDK 1.1.8

35 Copyright 2011 Saleae LLC. All Rights Reserved.

Writing your Analyzer’s Code

This second part of the document deals with writing the code for your analyzer.

There are 4 c++ files and 4 header files that you will implement to create your analyzer. If you followed

the procedure in the first part, you already have a working analyzer, and will be modifying that code to

suit your needs.

Conceptually, the analyzer can be broken into 4 main parts – the 4 c++ files. Working on them in a

particular order is highly recommended, and this document describes the procedure in this order.

First you’ll work on the AnalyzerSettings-derived class. You’ll define the settings your analyzer needs,

and create interfaces that’ll allow the Logic software to display a GUI for the settings. You’ll also

implement serialization for these settings so they can be saved and recalled from disk.

Next you implement the SimulationDataGenerator class. Here you’ll generate simulated data that can be

later to test your analyzer, or provide an example of what your analyzer expects.

Third you’ll create your AnalyzerResults-derived class. This class translates saved results into text for a

variety of uses. Here you’ll start thinking about the format your results will be saved in. You probably

will revisit your this file after implementing your Analyzer.

Lastly, you’ll implement your Analyzer-derived class. The main thing you’ll do here is translate data

streams into results, based on your protocol.

Let’s get started!

Saleae Analyzer SDK 1.1.8

36 Copyright 2011 Saleae LLC. All Rights Reserved.

Analyzer Settings

After setting up your analyzer project, and renaming the source files to match your project, the first step

is to implement/modify your analyzer’s AnalyzerSettings-derived class.

{YourName}AnalyzerSettings.h

In this file, you provide a declaration for your {YourName}AnalyzerSettings class. This class must inherit

from AnalyzerSettings, and should include the AnalyzerSettings.h header file.

We’ll start with this

#ifndef SIMPLESERIAL_ANALYZER_SETTINGS

#define SIMPLESERIAL_ANALYZER_SETTINGS

#include <AnalyzerSettings.h>

#include <AnalyzerTypes.h>

class SimpleSerialAnalyzerSettings : public AnalyzerSettings

{

public:

 SimpleSerialAnalyzerSettings();

 virtual ~SimpleSerialAnalyzerSettings();

 virtual bool SetSettingsFromInterfaces();

 void UpdateInterfacesFromSettings();

 virtual void LoadSettings(const char* settings);

 virtual const char* SaveSettings();

};

#endif //SIMPLESERIAL_ANALYZER_SETTINGS

In addition, your header will define two sets of variables:

User-modifiable settings

This will always include at least one variable of the type Channel – so the user can specify which input

channel to use. This cannot be hard coded, and must be exposed as a setting. (Channel isn’t just an

index, it also specifies which Logic device the channel is from). Other possible settings depend on your

protocol, and might include:

 Bit rate

 Bits per transfer

 Bit ordering (MSb first, LSb first)

 Clock edge (rising, falling) to use

Saleae Analyzer SDK 1.1.8

37 Copyright 2011 Saleae LLC. All Rights Reserved.

 Enable line polarity

 Etc – anything you need for your specific protocol. If you like, start with just the Channel

variable(s), and you can add more later to make your analyzer more flexible.

The variable types can be whatever you like – std::string, double, int, enum, etc. Note that these

variables will need to be serialized (saved for later, to a file) so when in doubt, stick to simple ty pes

(rather than custom classes or structs). The SDK provides a means to serialize and store your variables.

AnalyzerSettingsInterfaces

One of the services the Analyzer SDK provides is a means for users to edit your settings, with a GUI, with

minimal work on your part. To make this possible, each of your settings variables must have a

corresponding interface object. Here are the avalible AnalyzerSettingsInterface types:

 AnalyzerSettingInterfaceChannel: Used exclusivly for input channel selection.

 AnalyzerSettingInterfaceNumberList: Used to provide a list of numerical options for the user to

choose from. Note that this can be used to select from several enum types as well, as illustrated

below. (Each dropdown below is implemented with its own interface object)

 AnalyzerSettingInterfaceInteger: Allows a user to type an integer into a box.

 AnalyzerSettingInterfaceText: Allows a user to enter some text into a textbox.

 AnalyzerSettingInterfaceBool: Provides the user with a checkbox.

AnalyzerSettingsInterface types should be declared as pointers. (We’re using the std::auto_ptr type,

which largly acts like a standard (raw) pointer. It’s a simple form of what’s called a “smart pointer” and it

automaticly calls delete on its contents when it goes out of scope.)

Saleae Analyzer SDK 1.1.8

38 Copyright 2011 Saleae LLC. All Rights Reserved.

{YourName}AnalyzerSettings.cpp

The Constructor

In your constructor, we’ll first initilize all your settings variables to their default vaules. Second, we’ll

setup each variable’s corresponding interface object.

Note that if the user has previously entered values for this analyzer, these will be loaded at a later time.

Be sure to initialize the variables to values that you want to be defaults. These will show up when a user

adds a new instance of your analyzer.

Setting up each AnalyzerSettingInterface object

First, we create the object (call new) and assign the value to the interface’s pointer. Note that we’re

using std::auto_ptr, so this means calling the member function reset. For standard (raw pointers), you

would do something like:

mInputChannelInterface = new AnalyzerSettingInterfaceChannel();

Next, we call the member function SetTitleAndTooltip. The title will appear to the left of the input

element. Note that often times you won’t need a title, but you should use one for Channels. The tooltip

shows up when hovering over the input element.

void SetTitleAndTooltip(const char* title, const char* tooltip);

mInputChannelInterface->SetTitleAndTooltip("Serial", "Standard Async Serial");

We’ll want to set the value. The interface object is, well, an interface to our settings variables. When

setting up the interface, we copy the value from our settings variable to the interface. When the user

makes a change, we copy the value in the interface to our settings variable. The function names for this

differ depending on the type of interface.

void SetChannel(const Channel& channel);

void SetNumber(double number);

void SetInteger(int integer);

void SetText(const char* text);

void SetValue(bool value);

We’ll want to specify the allowable options. This depends on the type of interface.

AnalyzerSettingInterfaceChannel

void SetSelectionOfNoneIsAllowed(bool is_allowed);

Some channels can be optional , but typically they are not. By default, the user must select a chann el.

 AnalyzerSettingInterfaceNumberList

void AddNumber(double number, const char* str, const char* tooltip);

Saleae Analyzer SDK 1.1.8

39 Copyright 2011 Saleae LLC. All Rights Reserved.

Call AddNumber for every item you want in the dropdown. number is the value assiciated with the

selection; it is not displayed to the user.

AnalyzerSettingInterfaceInteger

void SetMax(int max);

void SetMin(int min);

You can set the allowable range for the integer the user can enter.

AnalyzerSettingInterfaceText

void SetTextType(TextType text_type);

By default, this interface just provides a simple textbox for the user to enter text, but you can also

specify that the text should be a path, which will cause a browse button to appear. The options are

NormalText, FilePath, or FolderPath.

 AnalyzerSettingInterfaceBool

There are only two allowable options for the bool interface (checkbox).

After creating our interfaces (with new), giving them a titles, settings their values, and specifying their

allowed options, we need to expose them to the API. We do that with function AddInterface.

void AddInterface(AnalyzerSettingInterface* analyzer_setting_interface);

Specifing the export options

Analyzers can offer more than one export type. For example txt or csv, or even a wav file or bitmap. If

these need special settings, they can be specified as analyzer variables/interfaces as we’ve discussed.

Export options are assigned an ID. Later, when your function for generating export data is called, this ID

will be provided. There are two functions you’ll need to call to specfiy an export type. Be sure to specify

at least one export type (tyically text/csv).

void AddExportOption(U32 user_id, const char* menu_text);

void AddExportExtension(U32 user_id, const char * extension_description, const char *

extension);

AddExportOption(0, "Export as text/csv file");

AddExportExtension(0, "text", "txt");

AddExportExtension(0, "csv", "csv");

Specifying which channels are in use

The analyzer must indicate which channel(s) it is using. This is done with the AddChannel function.

Every time the channel changes (such as when the user changes the channel) the reported channel must

be updated. To clear any previous channels that have been set, call ClearChannels.

void ClearChannels();

Saleae Analyzer SDK 1.1.8

40 Copyright 2011 Saleae LLC. All Rights Reserved.

void AddChannel(Channel& channel, const char* channel_label, bool is_used);

ClearChannels();

AddChannel(mInputChannel, "Serial", false);

Note that in the constructor, we have set is_used to false. This is because by defualt our channel is set

to UNDEFINED_CHANNEL. After the user has set the channel to something other thatn

UNDEFINED_CHANNEL, we would specify true. It would always be true, unless the channel was optional,

in which case you will need to examine the channel value, and specify false if the channel is set to

UNDEFINED_CHANNEL. We’ll discuss this later as it comes up.

The Destructor

Generally you won’t need to do anything in your AnalyzerSettings-derived class’s destructor. However,

if you are using standard (raw) pointers for your settings interfaces, you’ll need to delete them here.

bool {YourName}AnalyzerSettings::SetSettingsFromInterfaces()

As the name implies, in this function we will copy the values saved in our interface objects to our

settings variables. This function will be called if the user updates the settings.

We can also examine the values saved in the interface (the user’s selections) and choose to reject

combinations we don’t want to allow. If you want to reject a particular selection, do not assign the

values in the interfaces to your settings variables – use temporary variables so you can choose not to

assign them at the last moment. To reject a user’s selections, return false; otherwise return true. If you

return false (reject the user’s settings), you also need to call SetErrorText to indicate why. This will be

presented to the user in a popup dialog.

void SetErrorText(const char* error_text);

For example, when using more than one channel, you would typically want to make sure that all the

channels are different. You can use the AnalyzerHelpers::DoChannelsOverlap function to make that

easier if you like.

For your analyzer, it’s quite possible that all possible user selections are valid. In that case you can

ignore the above.

After assigning the interface values to your settings variables, you also need to update the channel(s)

the analyzer will report as being used. Below is an example from SimpleSerialAnalyzerSettings.

bool SimpleSerialAnalyzerSettings::SetSettingsFromInterfaces()

{

 mInputChannel = mInputChannelInterface->GetChannel();

 mBitRate = mBitRateInterface->GetInteger();

 ClearChannels();

 AddChannel(mInputChannel, "Simple Serial", true);

Saleae Analyzer SDK 1.1.8

41 Copyright 2011 Saleae LLC. All Rights Reserved.

 return true;

}

void {YourName}AnalyzerSettings::UpdateInterfacesFromSettings()

UpdateInterfacesFromSettings goes in the opposite direction. In this function, update all your interfaces

with the values from your settings variables. Below is an example from SimpleSerialAnalyzerSettings.

void SimpleSerialAnalyzerSettings::UpdateInterfacesFromSettings()

{

 mInputChannelInterface->SetChannel(mInputChannel);

 mBitRateInterface->SetInteger(mBitRate);

}

void {YourName}AnalyzerSettings::LoadSettings(const char* settings)

In the last to functions of your AnalyzerSettings-derived class, you’ll implement serialization

(persistence) of your settings. It’s pretty straightforward.

Your settings are saved in, and loaded from, a single string. You can technically serialize all of your

variables into a string anyway you like, including third part libraries like boost, but to keep things simple

we provided a mechanism to serialize your variables. We’ll discuss that here.

First, you’ll need a SimpleArchive object. This will perform serialization for us. Use SetString to provide

the archive with our settings string. This string is passed in as a parameter to LoadSettings.

class LOGICAPI SimpleArchive

{

public:

 SimpleArchive();

 ~SimpleArchive();

 void SetString(const char* archive_string);

 const char* GetString();

 bool operator<<(U64 data);

 bool operator<<(U32 data);

 bool operator<<(S64 data);

 bool operator<<(S32 data);

 bool operator<<(double data);

 bool operator<<(bool data);

 bool operator<<(const char* data);

 bool operator<<(Channel& data);

 bool operator>>(U64& data);

Saleae Analyzer SDK 1.1.8

42 Copyright 2011 Saleae LLC. All Rights Reserved.

 bool operator>>(U32& data);

 bool operator>>(S64& data);

 bool operator>>(S32& data);

 bool operator>>(double& data);

 bool operator>>(bool& data);

 bool operator>>(char const ** data);

 bool operator>>(Channel& data);

protected:

 struct SimpleArchiveData* mData;

};

Next we will use the archive to loaf all of our settings variables, using the overloaded >> operator. This

operator returns bool – it will return false if the requested type is not exactly in the right place in the

archive. This could happen if you change the settings variables over time, and a user tries to load an old

settings string. If loading fails, you can simply not update that settings variable (it will retain its default

value).

Since our channel values may have changed, we will also need to update the channels we’re reporting as

using. We need to do this every times settings change.

Lastly, call UpdateInterfacesFromSettings. This will update all our interfaces to reflect the newly loaded

values.

Below is an example from SimpleSerialAnalzerSettings.

void SimpleSerialAnalyzerSettings::LoadSettings(const char* settings)

{

 SimpleArchive text_archive;

 text_archive.SetString(settings);

 text_archive >> mInputChannel;

 text_archive >> mBitRate;

 ClearChannels();

 AddChannel(mInputChannel, "Simple Serial", true);

 UpdateInterfacesFromSettings();

}

const char* {YourName}AnalyzerSettings::SaveSettings()

Our last function will save all of our settings variables into a single string. We’ll use SimpleArchive to

serialize them.

Saleae Analyzer SDK 1.1.8

43 Copyright 2011 Saleae LLC. All Rights Reserved.

The order in which we serialize our settings variables must be exactly the same order as we extract

them, in LoadSettings.

When returning, use the SetReturnString function, as this will provide a pointer to a string that will not

go out of scope when the function ends.

Bellow is an example from SimpleSerialAnalyzerSettings:

const char* SimpleSerialAnalyzerSettings::SaveSettings()

{

 SimpleArchive text_archive;

 text_archive << mInputChannel;

 text_archive << mBitRate;

 return SetReturnString(text_archive.GetString());

}

Saleae Analyzer SDK 1.1.8

44 Copyright 2011 Saleae LLC. All Rights Reserved.

SimulationDataGenerator

The next step after creating your {YourName}AnalyzerSettings files, is to create your

SimulationDataGenerator.

Your SimulationDataGenerator class provides simulated data so that you can test your analyzer against

controlled, predictable waveforms. Generally you should make the simulated data match the user

settings, so you can easily test under a variety of expected conditions. In addition, simulated data gives

end users an example of what to expect when using your analyzer, as well as examples of what the

waveforms should look like.

That said, fully implementing simulated data is not absolutely required to make an analyzer.

{YourName}SimulationDataGenerator.h

Besides the constructor and destructor, there are only two required functions, and two required

variables. Other functions and variables can be added, to help implement your simulated data. Here is

an example starting point, from SimpleSerialSimulationDataGenerator.h

#ifndef SIMPLESERIAL_SIMULATION_DATA_GENERATOR

#define SIMPLESERIAL_SIMULATION_DATA_GENERATOR

#include <SimulationChannelDescriptor.h>

class SimpleSerialAnalyzerSettings;

class SimpleSerialSimulationDataGenerator

{

public:

 SimpleSerialSimulationDataGenerator();

 ~SimpleSerialSimulationDataGenerator();

 void Initialize(U32 simulation_sample_rate, SimpleSerialAnalyzerSettings*

settings);

 U32 GenerateSimulationData(U64 newest_sample_requested, U32 sample_rate,

SimulationChannelDescriptor** simulation_channel);

protected:

 SimpleSerialAnalyzerSettings* mSettings;

 U32 mSimulationSampleRateHz;

SimulationChannelDescriptor mSerialSimulationData;

};

#endif //SIMPLESERIAL_SIMULATION_DATA_GENERATOR

Saleae Analyzer SDK 1.1.8

45 Copyright 2011 Saleae LLC. All Rights Reserved.

Overview

The key to the SimulationDataGenerator is the class SimulationChannelDescriptor. You will need one of

these for every channel you will be simulated (serial, for example, only needs to simulate on one

channel). When your GenerateSimulationData function is called, your job will be to generate additional

simulated data, up to the amount requested. When complete, you provide the caller with a pointer to

an array of your SimulationChannelDescriptor objects.

We’ll go over this in detail in a minute.

{YourName}SimulationDataGenerator.cpp

Constructor/Destructor

You may or may not need anything in your constructor or destructor. For now at least, leave them

empty. At the time we’re constructed, we really have no idea what the settings are or anything else, so

there’s not much we can do at this point.

void {YourName}SimulationDataGenerator::Initialize(U32 simulation_sample_rate,

{YourName}AnalyzerSettings* settings)

This function provides you with the state of things as they are going to be when we start simulating.

We’ll need to save this information.

First, save simulation_sample_rate and settings to member variables. Notice that we now have a

pointer to our AnalyzerSettings-derived class. This is good, now we know what all the settings will be for

our simulation – which channel(s) it will be on, as well as any other settings we might need – like if the

signal is inverted, etc.

Next, we’ll want to initialize the state of our SimulationChannelDescriptor objects – we need to set what

channel it’s for, the sample rate, and the initial bit state (high or low).

At this point we’ll need to take a step back and discuss some key concepts.

BitState

BitState is a type used often in the SDK. It can be either BIT_LOW or BIT_HIGH, and represents a

channel’s logic state.

Sample Rate (samples per second)

Sample Rate refers to how many samples per second the data is. Typically it refers to how fast we’re

collecting data, but for simulation, it refers to how fast we’re generating sample data.

Saleae Analyzer SDK 1.1.8

46 Copyright 2011 Saleae LLC. All Rights Reserved.

Sample Number

This is the absolute sample number, starting at sample 0. When a data collection starts, the first sample

collected is Sample Number 0. The next sample collected is Sample Number 1, etc. This is the same in

simulation. The first sample we’ll provide is Sample Number 0, and so on.

SimulationChannelDescriptor

We need this object to describe a single channel of data, and what its waveform looks like. We do this

in a very simple way:

 We provide the initial state of the channel (BIT_LOW, or BIT_HIGH)

 We move forward some number of samples, and then toggle the channel.

o We repeatedly do this

The initial bit state of the channel never changes. The state (high or low) of a particular sample number

can be determined by knowing how many times it has toggled up to that point (an even or odd number

of times).

Put another way:

 In the very beginning, we specify the initial state (BIT_LOW or BIT_HIGH). This is the state of

Sample Number 0.

 Then, we move forward (advance) some number of samples. 20 samples, for example.

 Then, we toggle the channel (low becomes high, high becomes low).

 Then we move forward (advance) some more. Maybe 100 samples this time.

 Then we toggle again.

 Then we move forward again, and then we toggle again, etc.

Let’s explore the functions used to do this:

void Advance(U32 num_samples_to_advance);

As you might guess, this is how we move forward in our simulated waveform. Internally, the object

keeps track of what its Sample Number is. The Sample Number starts at 0. After calling Advance(10) x3

times, the Sample Number will be 30.

void Transition();

This toggles the channel. BIT_LOW becomes BIT_HIGH, BIT_HIGH becomes BIT_LOW. The current

Sample Number will become the new BitState (BIT_LOW or BIT_HIGH), and all samples after that will

also be the new BitState, untill we toggle again.

Saleae Analyzer SDK 1.1.8

47 Copyright 2011 Saleae LLC. All Rights Reserved.

void TransitionIfNeeded(BitState bit_state);

Often we don’t want to keep track of the current BitState, which toggles every time we call Transition.

TransitionIfNeeded checks the current BitState, and only transitions if the current BitState doesn’t match

the one we provide. In other words “Change to this bit_state, if we’re not already”.

BitState GetCurrentBitState();

This function lets you directly ask what the current BitState is.

U64 GetCurrentSampleNumber();

This function lets you ask what the current SampleNumber is.

ClockGenerator

A common issue with converting exact timing values into numbers-of-samples, is that you lose some

precision. This isn’t always a problem, but it’s nice to have a way to keep track of how much error is

building up, and then, just at the right times, add an extra sample in so that on average, the timing is

exact.

ClockGenerator is a class provided in AnalyzerHelpers.h which will let you enter time values, rather than

numbers-of-samples. For example, instead of figuring out how many samples are in 500ns, you can just

use ClockGenerator to both figure it out and manage the error, so that on average, your timing is

perfect.

Initially we created ClockGenerator to create clock-like signals, but now you can use and time value, any

time. Here’s how:

void Init(double target_frequency, U32 sample_rate_hz);

You’ll need to call this before using the class. For sample_rate_hz, enter the sample rate we’ll be

generating data at. For target_frequency, enter the frequency (in hz) you will most commonly be using.

For example, the bit rate of a SPI clock, etc.

U32 AdvanceByHalfPeriod(double multiple = 1.0);

This function returns how many samples are needed to move forward by one half of the period (for

example, the low time for a perfect square wave). You can also enter a multiple. For exaple, to get the

number of samples to move forward for a full period, enter 2.0.

U32 AdvanceByTimeS(double time_s);

This functions provides number of samples needed to advance by the arbitrary time, time_s. Note that

this is in seconds, so enter 1E-6 for for one microsecond, etc.

Saleae Analyzer SDK 1.1.8

48 Copyright 2011 Saleae LLC. All Rights Reserved.

Note that the number of samples for a specific time period may change slightly every once in a while.

This is so that on average, timing will be exact.

You may want to have a ClockGenerator as a member of you class. This makes it easy to use from any

helper functions you might create.

void {YourName}SimulationDataGenerator::Initialize(U32 simulation_sample_rate,

{YourName}AnalyzerSettings* settings)

Let’s take another look at the Initialize function, now that we have an idea what’s going on. This

example is from SimpleSerialSimulationDataGenerator.cpp.

void SimpleSerialSimulationDataGenerator::Initialize(U32 simulation_sample_rate,

SimpleSerialAnalyzerSettings* settings)

{

 mSimulationSampleRateHz = simulation_sample_rate;

 mSettings = settings;

 mSerialSimulationData.SetChannel(mSettings->mInputChannel);

 mSerialSimulationData.SetSampleRate(simulation_sample_rate);

 mSerialSimulationData.SetInitialBitState(BIT_HIGH);

}

U32 {YourName}SimulationDataGenerator::GenerateSimulationData(U64

largest_sample_requested, U32 sample_rate, SimulationChannelDescriptor** simulation_channel)

This function is repeatedly called to request more simulated data. When it’s call ed, just keep going

where you left off. In addition, you can generate more data that requested, to make things easy -- that

way you don’t have to stop half way in the middle of something and try to pick it back up later exactly

where you left off.

When we leave the function, our Sample Number – in our SimulationChannelDecriptor object(s) must be

equal to or larger than largest_sample_requested. Actually, this number needs to first be adjusted (for

technical reasons related to future compatibility). Use the helper function

AdjustSimulationTargetSample to do this, as we’ll see in a moment.

The parameter simulation_channels is to provide the caller with a pointer to an array of your

SimulationChannelDecriptor objects. We’ll set this pointer at the end of the function. The return value

is the number of elements in the array – the number of channels.

The primary task of the function is to generate the simulation data, which we typically do in a loop –

checking until we have generated enough data. A clean way of doing this is to generate a complete

piece (possibly a full transaction) of your protocol in a helper function. Then just repeatedly call this

function until enough data has been generated. You can also add spacing between the elements of your

protocol as you like.

Saleae Analyzer SDK 1.1.8

49 Copyright 2011 Saleae LLC. All Rights Reserved.

Here is an example from SimpleSerialSimulationDataGenerator.cpp. We’re going to be outputting chars

from a string, which we initialized in our constructor as shown.

SimpleSerialSimulationDataGenerator::SimpleSerialSimulationDataGenerator()

: mSerialText("My first analyzer, woo hoo!"),

 mStringIndex(0)

{

}

U32 SimpleSerialSimulationDataGenerator::GenerateSimulationData(U64

largest_sample_requested, U32 sample_rate, SimulationChannelDescriptor**

simulation_channel)

{

 U64 adjusted_largest_sample_requested =

AnalyzerHelpers::AdjustSimulationTargetSample(largest_sample_requested, sample_rate,

mSimulationSampleRateHz);

 while(mSerialSimulationData.GetCurrentSampleNumber() <

adjusted_largest_sample_requested)

 {

 CreateSerialByte();

 }

 *simulation_channel = &mSerialSimulationData;

 return 1;

}

void SimpleSerialSimulationDataGenerator::CreateSerialByte()

{

 U32 samples_per_bit = mSimulationSampleRateHz / mSettings->mBitRate;

 U8 byte = mSerialText[mStringIndex];

 mStringIndex++;

 if(mStringIndex == mSerialText.size())

 mStringIndex = 0;

 //we're currenty high

 //let's move forward a little

 mSerialSimulationData.Advance(samples_per_bit * 10);

 mSerialSimulationData.Transition(); //low-going edge for start bit

 mSerialSimulationData.Advance(samples_per_bit); //add start bit time

 U8 mask = 0x1 << 7;

 for(U32 i=0; i<8; i++)

Saleae Analyzer SDK 1.1.8

50 Copyright 2011 Saleae LLC. All Rights Reserved.

 {

 if((byte & mask) != 0)

 mSerialSimulationData.TransitionIfNeeded(BIT_HIGH);

 else

 mSerialSimulationData.TransitionIfNeeded(BIT_LOW);

 mSerialSimulationData.Advance(samples_per_bit);

 mask = mask >> 1;

 }

 mSerialSimulationData.TransitionIfNeeded(BIT_HIGH); //we need to end high

 //lets pad the end a bit for the stop bit:

 mSerialSimulationData.Advance(samples_per_bit);

}

There are a few things we could do to clean this up. First, we could save the samples_per_bit as a

member variable, and compute it only once, in the Initialize function. If we wanted to be more accurate,

we could use the ClockGenerator class to pre-populate an array of samples_per_bit values, so on

average the timing would be perfect. We would use this as a lookup each time we Advance one bit.

Another thing we could do is use the DataExtractor class to take care of the bit masking/testing.

However, in our simple example what we have works well enough, and it has the advantage of being a

bit more transparent.

Simulating Multiple Channels

Simulating multiple channels requres multiple SimulationChannelDescriptors, and they must be in an

array. The best way to this is to use the helper class, SimulationChannelDescriptorGroup.

Here is an example of I2C (2 channels)—these are the the member varaible definitions in

I2cSimulationDataGenerator.h:

 SimulationChannelDescriptorGroup mI2cSimulationChannels;

 SimulationChannelDescriptor* mSda;

 SimulationChannelDescriptor* mScl;

Then, in the Initialize function:

mSda = mI2cSimulationChannels.Add(settings->mSdaChannel, mSimulationSampleRateHz,

BIT_HIGH);

mScl = mI2cSimulationChannels.Add(settings->mSclChannel, mSimulationSampleRateHz,

BIT_HIGH);

And to provide the array to the caller of GenerateSimulationData:

*simulation_channels = mI2cSimulationChannels.GetArray();

return mI2cSimulationChannels.GetCount();

Saleae Analyzer SDK 1.1.8

51 Copyright 2011 Saleae LLC. All Rights Reserved.

You can use each SimulationChannelDescriptor object pointer separately, calling Advance, Transition, etc

on each one, or you can manipulate them as a group, using the AdvanceAll method of the

SimulationChannelDescriptorGroup object.

void AdvanceAll(U32 num_samples_to_advance);

Before returning from GenerateSimulationData, be sure that the Sample Number of all of your

SimulationChannelDescriptor objects exceed adjusted_largest_sample_requested.

Examples of generating simulation data

void SerialSimulationDataGenerator::CreateSerialByte(U64 value)

void SerialSimulationDataGenerator::CreateSerialByte(U64 value)

{

 //assume we start high

 mSerialSimulationData.Transition(); //low-going edge for start bit

 mSerialSimulationData.Advance(mClockGenerator.AdvanceByHalfPeriod()); //add

start bit time

 if(mSettings->mInverted == true)

 value = ~value;

 U32 num_bits = mSettings->mBitsPerTransfer;

 BitExtractor bit_extractor(value, mSettings->mShiftOrder, num_bits);

 for(U32 i=0; i<num_bits; i++)

 {

 mSerialSimulationData.TransitionIfNeeded(bit_extractor.GetNextBit());

 mSerialSimulationData.Advance(mClockGenerator.AdvanceByHalfPeriod());

 }

 if(mSettings->mParity == AnalyzerEnums::Even)

 {

 if(AnalyzerHelpers::IsEven(AnalyzerHelpers::GetOnesCount(value)) ==

true)

 mSerialSimulationData.TransitionIfNeeded(mBitLow); //we want to

add a zero bit

 else

 mSerialSimulationData.TransitionIfNeeded(mBitHigh); //we want to

add a one bit

Saleae Analyzer SDK 1.1.8

52 Copyright 2011 Saleae LLC. All Rights Reserved.

 mSerialSimulationData.Advance(mClockGenerator.AdvanceByHalfPeriod());

 }else

 if(mSettings->mParity == AnalyzerEnums::Odd)

 {

 if(AnalyzerHelpers::IsOdd(AnalyzerHelpers::GetOnesCount(value)) ==

true)

 mSerialSimulationData.TransitionIfNeeded(mBitLow); //we want to

add a zero bit

 else

 mSerialSimulationData.TransitionIfNeeded(mBitHigh);

 mSerialSimulationData.Advance(mClockGenerator.AdvanceByHalfPeriod());

 }

 mSerialSimulationData.TransitionIfNeeded(mBitHigh); //we need to end high

 //lets pad the end a bit for the stop bit:

 mSerialSimulationData.Advance(mClockGenerator.AdvanceByHalfPeriod(mSettings-

>mStopBits));

}

Note that above we use a number of helper functions and classes. Let’s discuss BitExtractor briefly.

BitExtractor

BitExtractor(U64 data, AnalyzerEnums::ShiftOrder shift_order, U32 num_bits);

BitState GetNextBit();

Some protocols have varaible numbers of bits per word, and settings for if the most significant bit is first

or last. This can be a pain to manage, so we made the BitExtraxtor class. This can be done by hand of

course if you like, but this class tends to tidy up the code quite a bit in our experiece.

Similar, but reveresed, is the DataBuilder class, but as this generally used for collecting data, we’ll talk

more about it then.

AnalyzerHelpers

Some static helper functions that might be helpful, grouped under the class AnalyzerHelpers, include:

static bool IsEven(U64 value);

static bool IsOdd(U64 value);

static U32 GetOnesCount(U64 value);

static U32 Diff32(U32 a, U32 b);

Saleae Analyzer SDK 1.1.8

53 Copyright 2011 Saleae LLC. All Rights Reserved.

void I2cSimulationDataGenerator::CreateBit(BitState bit_state)

void I2cSimulationDataGenerator::CreateBit(BitState bit_state)

{

 if(mScl->GetCurrentBitState() != BIT_LOW)

 AnalyzerHelpers::Assert("CreateBit expects to be entered with scl low");

 mI2cSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(0.5));

 mSda->TransitionIfNeeded(bit_state);

 mI2cSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(0.5));

 mScl->Transition(); //posedge

 mI2cSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(1.0));

 mScl->Transition(); //negedge

}

void I2cSimulationDataGenerator::CreateI2cByte(U8 data, I2cResponse reply)

void I2cSimulationDataGenerator::CreateI2cByte(U8 data, I2cResponse reply)

{

 if(mScl->GetCurrentBitState() == BIT_HIGH)

 {

 mI2cSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(

1.0));

 mScl->Transition();

 mI2cSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(

1.0));

 }

 BitExtractor bit_extractor(data, AnalyzerEnums::MsbFirst, 8);

 for(U32 i=0; i<8; i++)

 {

 CreateBit(bit_extractor.GetNextBit());

 }

 if(reply == I2C_ACK)

 CreateBit(BIT_LOW);

 else

 CreateBit(BIT_HIGH);

Saleae Analyzer SDK 1.1.8

54 Copyright 2011 Saleae LLC. All Rights Reserved.

 mI2cSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(4.0));

}

void I2cSimulationDataGenerator::CreateI2cTransaction(U8 address, I2cDirection direction, U8 data

)

void I2cSimulationDataGenerator::CreateI2cTransaction(U8 address, I2cDirection

direction, U8 data)

{

 U8 command = address << 1;

 if(direction == I2C_READ)

 command |= 0x1;

 CreateStart();

 CreateI2cByte(command, I2C_ACK);

 CreateI2cByte(data, I2C_ACK);

 CreateI2cByte(data, I2C_NAK);

 CreateStop();

}

U32 I2cSimulationDataGenerator::GenerateSimulationData(U64 largest_sample_requested, U32

sample_rate, SimulationChannelDescriptor** simulation_channels)

U32 I2cSimulationDataGenerator::GenerateSimulationData(U64 largest_sample_requested, U32

sample_rate, SimulationChannelDescriptor** simulation_channels)

{

 U64 adjusted_largest_sample_requested =

AnalyzerHelpers::AdjustSimulationTargetSample(largest_sample_requested, sample_rate,

mSimulationSampleRateHz);

 while(mScl->GetCurrentSampleNumber() < adjusted_largest_sample_requested)

 {

 CreateI2cTransaction(0xA0, I2C_READ, mValue++);

 mI2cSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(

10.0)); //insert 10 bit-periods of idle

 }

 *simulation_channels = mI2cSimulationChannels.GetArray();

 return mI2cSimulationChannels.GetCount();

}

void SpiSimulationDataGenerator::OutputWord_CPHA1(U64 mosi_data, U64 miso_data)

void SpiSimulationDataGenerator::OutputWord_CPHA1(U64 mosi_data, U64 miso_data)

{

 BitExtractor mosi_bits(mosi_data, mSettings->mShiftOrder, mSettings-

>mBitsPerTransfer);

Saleae Analyzer SDK 1.1.8

55 Copyright 2011 Saleae LLC. All Rights Reserved.

 BitExtractor miso_bits(miso_data, mSettings->mShiftOrder, mSettings-

>mBitsPerTransfer);

 U32 count = mSettings->mBitsPerTransfer;

 for(U32 i=0; i<count; i++)

 {

 mClock->Transition(); //data invalid

 mMosi->TransitionIfNeeded(mosi_bits.GetNextBit());

 mMiso->TransitionIfNeeded(miso_bits.GetNextBit());

 mSpiSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(.5

));

 mClock->Transition(); //data valid

 mSpiSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(.5

));

 }

 mMosi->TransitionIfNeeded(BIT_LOW);

 mMiso->TransitionIfNeeded(BIT_LOW);

 mSpiSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(2.0));

}

void SpiSimulationDataGenerator::CreateSpiTransaction()

void SpiSimulationDataGenerator::CreateSpiTransaction()

{

 if(mEnable != NULL)

 mEnable->Transition();

 mSpiSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(2.0));

 if(mSettings->mDataValidEdge == AnalyzerEnums::LeadingEdge)

 {

 OutputWord_CPHA0(mValue, mValue+1);

 mValue++;

 OutputWord_CPHA0(mValue, mValue+1);

 mValue++;

 OutputWord_CPHA0(mValue, mValue+1);

 mValue++;

 if(mEnable != NULL)

Saleae Analyzer SDK 1.1.8

56 Copyright 2011 Saleae LLC. All Rights Reserved.

 mEnable->Transition();

 OutputWord_CPHA0(mValue, mValue+1);

 mValue++;

 }else

 {

 OutputWord_CPHA1(mValue, mValue+1);

 mValue++;

 OutputWord_CPHA1(mValue, mValue+1);

 mValue++;

 OutputWord_CPHA1(mValue, mValue+1);

 mValue++;

 if(mEnable != NULL)

 mEnable->Transition();

 OutputWord_CPHA1(mValue, mValue+1);

 mValue++;

 }

}

U32 SpiSimulationDataGenerator::GenerateSimulationData(U64 largest_sample_requested, U32

sample_rate, SimulationChannelDescriptor** simulation_channels)

U32 SpiSimulationDataGenerator::GenerateSimulationData(U64 largest_sample_requested, U32

sample_rate, SimulationChannelDescriptor** simulation_channels)

{

 U64 adjusted_largest_sample_requested =

AnalyzerHelpers::AdjustSimulationTargetSample(largest_sample_requested, sample_rate,

mSimulationSampleRateHz);

 while(mClock->GetCurrentSampleNumber() < adjusted_largest_sample_requested)

 {

 CreateSpiTransaction();

 mSpiSimulationChannels.AdvanceAll(mClockGenerator.AdvanceByHalfPeriod(

10.0)); //insert 10 bit-periods of idle

 }

 *simulation_channels = mSpiSimulationChannels.GetArray();

 return mSpiSimulationChannels.GetCount();

}

Saleae Analyzer SDK 1.1.8

57 Copyright 2011 Saleae LLC. All Rights Reserved.

AnalyzerResults

After creating your SimulationDataGenerator class, working on your {YourName}AnalyzerResults files is

the next step.

AnalyzerResults is what we use to transform our results into text for display and as well as exported

files, etc.

Tip: You may end up finalizing may of the details about how your results are saved when you work on

your main Analyzer file – {YourName}Analyzer.cpp/.h; You can simply implement the bare minimum of

the functions in your {YourName}AnalyzerResults.cpp file, and come back to it later.

{YourName}AnalyzerResults.h

In addition to the constructor and destructor, there are 5 functions we’ll need to implement.

AnalyzerResults is fairly straightforward, so typically we won’t need much in the way of helper functions

or member variables.

Here’s the SimpleSerialAnalyzerResults header file. Yours will like very similar, with the only difference

typically being the enums and/or defines you need.

#ifndef SIMPLESERIAL_ANALYZER_RESULTS

#define SIMPLESERIAL_ANALYZER_RESULTS

#include <AnalyzerResults.h>

class SimpleSerialAnalyzer;

class SimpleSerialAnalyzerSettings;

class SimpleSerialAnalyzerResults : public AnalyzerResults

{

public:

 SimpleSerialAnalyzerResults(SimpleSerialAnalyzer* analyzer,

SimpleSerialAnalyzerSettings* settings);

 virtual ~SimpleSerialAnalyzerResults();

 virtual void GenerateBubbleText(U64 frame_index, Channel& channel, DisplayBase

display_base);

 virtual void GenerateExportFile(const char* file, DisplayBase display_base, U32

export_type_user_id);

 virtual void GenerateFrameTabularText(U64 frame_index, DisplayBase display_base);

 virtual void GeneratePacketTabularText(U64 packet_id, DisplayBase display_base);

 virtual void GenerateTransactionTabularText(U64 transaction_id, DisplayBase

display_base);

Saleae Analyzer SDK 1.1.8

58 Copyright 2011 Saleae LLC. All Rights Reserved.

protected: //functions

protected: //vars

 SimpleSerialAnalyzerSettings* mSettings;

 SimpleSerialAnalyzer* mAnalyzer;

};

#endif //SIMPLESERIAL_ANALYZER_RESULTS

{YourName}AnalyzerResults.cpp

In your constructor, save copies of the Analyzer and Settings raw pointers provided. There’s generally

nothing else to do for the constructor or destructor. Below is an example from

SimpleSerialAnalyzerResults.cpp:

SimpleSerialAnalyzerResults::SimpleSerialAnalyzerResults(SimpleSerialAnalyzer* analyzer,

SimpleSerialAnalyzerSettings* settings)

: AnalyzerResults(),

 mSettings(settings),

 mAnalyzer(analyzer)

{

}

Frames, Packets, and Transactions

The basic result an analyzer generates is called a Frame. This could be byte of serial data, the header of

a CAN packet, the MOSI and MISO values from 8-bit of SPI, etc. Smaller elements, such the Start and

Stop events in I2C can be saved as Frames, are probably better saved as be graphical elements (called

Markers) and otherwise ignored. Collections of Frames make up Packets, and collections of Packets

make up Transactions.

95% of what you will be concerned about is Frames. What exactly a Frame represents is your choice,

but unless your protocol is fairly complicated (such as USB, CAN, Ethernet) the best bet is to make the

Frame your main result element.

We’ll get into more detail regarding how to save your results when we describe to your Analyzer-derived

class.

Frame

A Frame is an object, with fairly generic member variables which can be used to save results. Here is the

definition of a Frame:

class LOGICAPI Frame

{

Saleae Analyzer SDK 1.1.8

59 Copyright 2011 Saleae LLC. All Rights Reserved.

public:

 Frame();

 Frame(const Frame& frame);

 ~Frame();

 S64 mStartingSampleInclusive;

 S64 mEndingSampleInclusive;

 U64 mData1;

 U64 mData2;

 U8 mType;

 U8 mFlags;

};

A Frame represents a piece of information conveyed by your protocol over an expanse of time. The

member variables mStartingSampleInclusive and mEndingSampleInclusive are the sample numbers for

the beginning and end of the Frame. Note that Frames may not overlap; they cannot even share the

same sample. For example, if a single clock edge ends one Frame, and starts a new Frame, then you’ll

need to add one (+1) to the mStartingSampleInclusive of the second frame.

In addition, the Frame can carry two 64-bit numbers as data. For example, in SPI, one of these is used

for the MISO result, and the other for the MISO result. Often times you’ll only use one of these

variables.

The mType variable is intended to be used to save a custom-defined enum value, representing the type

of Frame. For example, CAN can have many different types of frames – header, data, CRC, etc. Serial

only has one type, and it doesn’t use this member variable.

mFlags is intended to be a holder for custom flags which might apply to frame. Note that this is not

intended for use with a custom an enum, but rather for individual bits that can be or’ed together. For

example, in Serial, there is a flag for framing-error, and a flag for parity error.

#define FRAMING_ERROR_FLAG (1 << 0)

#define PARITY_ERROR_FLAG (1 << 1)

Two flags are reserved by the system, and will produce an error or warning indication on the bubble

displaying the Frame.

#define DISPLAY_AS_ERROR_FLAG (1 << 7)

#define DISPLAY_AS_WARNING_FLAG (1 << 6)

void {YourName}AnalyzerResults::GenerateBubbleText(U64 frame_index, Channel& channel,

DisplayBase display_base)

GenerateBubbleText exists to retrieve text to put in a bubble to be displayed on the screen. If you like

you can leave this function empty, and return to it after implementing the rest of your analyzer.

Saleae Analyzer SDK 1.1.8

60 Copyright 2011 Saleae LLC. All Rights Reserved.

 The frame_index is the index to use to get the Frame itself – for example:

Frame frame = GetFrame(frame_index);

Rarely, an analyzer needs to display results on more than one channel (SPI is the only example of this in

an analyzer we make). If so, the channel which is requesting the bubble is specified in the channel

parameter. In most situations, this can simply be ignored. If you need to use it, just compare it to the

channels saved in your mSettings object to see which bubble should be generated – for example, for the

MISO or MOSI channel.

display_base specifies the radix (hex, decimal, binary) that any numerical values should be displayed in.

There are some helper functions provided so you should never have to deal directly with this issue.

enum DisplayBase { Binary, Decimal, Hexadecimal, ASCII };

AnalyzerHelpers::GetNumberString(U64 number, DisplayBase display_base, U32

num_data_bits, char* result_string, U32 result_string_max_length);

In GetNumberString, above, note that num_data_bits is the number of bits which are actually part of

your result. For sample, for I2C, this is always 8. It will depend on your protocol and possibly on user

settings. Providing this will let GetNumberString produce a well-formatted number with the right

amount of zero-padding for the type of value under consideration.

Bubbles can display different length strings, depending on how much room is available. You should

generate several results strings. The simplest might simply indicate the type of contents (‘D’ for data,

for example), longer ones might indicate the full number (“0xFF01”), and longer ones might be very

verbose (“Left Channel Audio Data: 0xFF01”).

To provide strings to the caller, use the AddStringResult function. This will make sure that the strings

persist after the function has returned. Always call ClearResultStrings before adding any string results.

Note that to easily concatenate multiple strings, simply provide AddStringResult with more strings.

void ClearResultStrings();

void AddResultString(const char* str1, const char* str2 = NULL, const char* str3 = NULL,

const char* str4 = NULL, const char* str5 = NULL, const char* str6 = NULL); //multiple

strings will be concatinated

Here’s the Serial Analyzer’s GenerateBubbleText function:

 void SerialAnalyzerResults::GenerateBubbleText(U64 frame_index, Channel& /*channel*/,

DisplayBase display_base) //unrefereced vars commented out to remove warnings.

{

 //we only need to pay attention to 'channel' if we're making bubbles for more than

one channel (as set by AddChannelBubblesWillAppearOn)

 ClearResultStrings();

 Frame frame = GetFrame(frame_index);

 bool framing_error = false;

Saleae Analyzer SDK 1.1.8

61 Copyright 2011 Saleae LLC. All Rights Reserved.

 if((frame.mFlags & FRAMING_ERROR_FLAG) != 0)

 framing_error = true;

 bool parity_error = false;

 if((frame.mFlags & PARITY_ERROR_FLAG) != 0)

 parity_error = true;

 char number_str[128];

 AnalyzerHelpers::GetNumberString(frame.mData1, display_base, mSettings-

>mBitsPerTransfer, number_str, 128);

 char result_str[128];

 if((parity_error == true) || (framing_error == true))

 {

 AddResultString("!");

 sprintf(result_str, "%s (error)", number_str);

 AddResultString(result_str);

 if(parity_error == true && framing_error == false)

 sprintf(result_str, "%s (parity error)", number_str);

 else

 if(parity_error == false && framing_error == true)

 sprintf(result_str, "%s (framing error)", number_str);

 else

 sprintf(result_str, "%s (framing error & parity error)",

number_str);

 AddResultString(result_str);

 }else

 {

 AddResultString(number_str);

 }

}

void {YourName}AnalyzerResults::GenerateExportFile(const char* file, DisplayBase

display_base, U32 export_type_user_id)

This function is called when the user tries to export the analyzer results to a file. If you like, you can

leave this function empty, and come back to it after finalizing the rest of your analyzer design.

The file parameter is string containing the full path of the file you should create and write to with the

analyzer results.

Saleae Analyzer SDK 1.1.8

62 Copyright 2011 Saleae LLC. All Rights Reserved.

std::ofstream file_stream(file, std::ios::out);

The display_base parameter contains the radix which should be used to display numerical results. (See

GenerateBubbleText for more detail)

The export_type_user_id parameter is the id associated with the export-type the user selected. You

specify what these options are (there should be at least one) in the constructor of your AnalyzerSettings-

derived class. If you only have one export option you can ignore this parameter.

Often times you’ll want to print out the time (in seconds) associated with a particular result. To do this,

use the GetTimeString helper function. You’ll need the trigger sample number and the sample rate –

which can be obtained from your Analyzer object pointer.

U64 trigger_sample = mAnalyzer->GetTriggerSample();

U32 sample_rate = mAnalyzer->GetSampleRate();

static void AnalyzerHelpers::GetTimeString(U64 sample, U64 trigger_sample, U32

sample_rate_hz, char* result_string, U32 result_string_max_length);

Other than that, the implementation is pretty straightforward. Here is an example from

SerialAnalyzerResults.cpp:

void SerialAnalyzerResults::GenerateExportFile(const char* file, DisplayBase

display_base, U32 /*export_type_user_id*/)

{

 //export_type_user_id is only important if we have more than one export type.

 std::ofstream file_stream(file, std::ios::out);

 U64 trigger_sample = mAnalyzer->GetTriggerSample();

 U32 sample_rate = mAnalyzer->GetSampleRate();

 file_stream << "Time [s],Value,Parity Error,Framing Error" << std::endl;

 U64 num_frames = GetNumFrames();

 for(U32 i=0; i < num_frames; i++)

 {

 Frame frame = GetFrame(i);

 //static void GetTimeString(U64 sample, U64 trigger_sample, U32

sample_rate_hz, char* result_string, U32 result_string_max_length);

 char time_str[128];

 AnalyzerHelpers::GetTimeString(frame.mStartingSampleInclusive,

trigger_sample, sample_rate, time_str, 128);

 char number_str[128];

 AnalyzerHelpers::GetNumberString(frame.mData1, display_base, mSettings-

>mBitsPerTransfer, number_str, 128);

Saleae Analyzer SDK 1.1.8

63 Copyright 2011 Saleae LLC. All Rights Reserved.

 file_stream << time_str << "," << number_str;

 if((frame.mFlags & FRAMING_ERROR_FLAG) != 0)

 file_stream << ",Error,";

 else

 file_stream << ",";

 if((frame.mFlags & FRAMING_ERROR_FLAG) != 0)

 file_stream << "Error";

 file_stream << std::endl;

 if(UpdateExportProgressAndCheckForCancel(i, num_frames) == true)

 {

 file_stream.close();

 return;

 }

 }

 file_stream.close();

}

void SerialAnalyzerResults::GenerateFrameTabularText(U64 frame_index, DisplayBase

display_base)

GenerateFrameTabularText is for producing text for tabular display which is not yet implemented as of

1.1.5. You can safely leave it empty.

GenerateFrameTabularText is almost the same as GenerateBubbleText, except that you should generate

only one text result. Ideally the string should be concise, and only be a couple inches long or less under

normal (non error) circumstances.

Here is an example from SerialAnayzerResults.cpp:

void SerialAnalyzerResults::GenerateFrameTabularText(U64 frame_index, DisplayBase

display_base)

{

 Frame frame = GetFrame(frame_index);

 ClearResultStrings();

 bool framing_error = false;

 if((frame.mFlags & FRAMING_ERROR_FLAG) != 0)

 framing_error = true;

Saleae Analyzer SDK 1.1.8

64 Copyright 2011 Saleae LLC. All Rights Reserved.

 bool parity_error = false;

 if((frame.mFlags & PARITY_ERROR_FLAG) != 0)

 parity_error = true;

 char number_str[128];

 AnalyzerHelpers::GetNumberString(frame.mData1, display_base, mSettings-

>mBitsPerTransfer, number_str, 128);

 char result_str[128];

 if(parity_error == false && framing_error == false)

 {

 AddResultString(number_str);

 }else

 if(parity_error == true && framing_error == false)

 {

 sprintf(result_str, "%s (parity error)", number_str);

 AddResultString(result_str);

 }else

 if(parity_error == false && framing_error == true)

 {

 sprintf(result_str, "%s (framing error)", number_str);

 AddResultString(result_str);

 }else

 {

 sprintf(result_str, "%s (framing error & parity error)", number_str);

 AddResultString(result_str);

 }

}

void SerialAnalyzerResults::GeneratePacketTabularText(U64 packet_id, DisplayBase

display_base)

This function is used to produce strings representing packet results for the tabular view. For now, just

leave it empty. We’ll be updating the SDK and software to take advantage of this capability later.

void SerialAnalyzerResults::GenerateTransactionTabularText (U64 transaction_id,

DisplayBase display_base)

This function is used to produce strings representing packet results for the tabul ar view. For now, just

leave it empty. We’ll be updating the SDK and software to take advantage of this capability later.

Saleae Analyzer SDK 1.1.8

65 Copyright 2011 Saleae LLC. All Rights Reserved.

Analyzer

Your Analyzer-derived class is the heart of the analyzer. It’s here were we analyze the bits coming in – in

real time – and generate analyzer results. Other than a few other housekeeping things, that’s it. Let’s

get started.

{YourName}Analyzer.h

In addition to the constructor and destructor, here are the functions you’ll need to implement:

 virtual void WorkerThread();

 virtual U32 GenerateSimulationData(U64 newest_sample_requested, U32 sample_rate,

SimulationChannelDescriptor** simulation_channels);

 virtual U32 GetMinimumSampleRateHz();

 virtual const char* GetAnalyzerName() const;

 virtual bool NeedsRerun();

extern "C" ANALYZER_EXPORT const char* __cdecl GetAnalyzerName();

extern "C" ANALYZER_EXPORT Analyzer* __cdecl CreateAnalyzer();

extern "C" ANALYZER_EXPORT void __cdecl DestroyAnalyzer(Analyzer* analyzer);

You’ll also need these member variables:

std::auto_ptr< {YourName}AnalyzerSettings > mSettings;

std::auto_ptr< {YourName}AnalyzerResults > mResults;

{YourName}SimulationDataGenerator mSimulationDataGenerator;

bool mSimulationInitilized;

You’ll also need one AnalyzerChannelData raw pointer for each input. For SerialAnalyzer, for example,

we need

AnalyzerChannelData* mSerial;

As you develop your analyzer, you’ll add additional member variables and helper functions dependning

on your analysis needs.

{YourName}Analyzer.cpp

Constructor

Your constructor will look something like this

{YourName}Analyzer::{YourName}Analyzer()

: Analyzer(),

 mSettings(new {YourName}AnalyzerSettings()),

 mSimulationInitilized(false)

Saleae Analyzer SDK 1.1.8

66 Copyright 2011 Saleae LLC. All Rights Reserved.

{

 SetAnalyzerSettings(mSettings.get());

}

Note that here you’re calling the base class conststructor, newing your AnalyzerSettings-derived class,

and providing the base class with a pointer to your AnalyzerSettings-derived object.

Destructor

This only thing your destructor must do is call KillThread. This is a base class member function and will

make sure your class destructs in the right order.

void {YourName}Analyzer::WorkerThread()

This function the key to everything – it’s where you’ll decode the incoming data. Let’s leave it empty for

now, and we’ll discuss in detail once we complete the other housekeeping functions.

bool {YourName}Analyzer::NeedsRerun()

Generally speaking, just return false in this function. For more detail, read on.

This function is called when your analyzer has finished analyzing the collected data (this condition is

detected from outside your analyzer.)

This function gives you the opportunity to run the analyzer all over again, on the same data. To do this,

simply return true. Otherwise, return false. The only thing this is currently used for is for our Serial

analyzer, for “autobaud”. When using autobaud, we don’t know ahead of time what the serial bit rate

will be. If the rate turns out to be significantly different from the rate we ran the analysis at, we return

true to re-run the analysis.

If you return true, that’s all there is to do. Your analyzer will be re-run automatically.

U32 {YourName}Analyzer::GenerateSimulationData(U64 minimum_sample_index, U32

device_sample_rate, SimulationChannelDescriptor** simulation_channels)

This is the function that gets called to obtain simulated data. We made a dedicated class for handling

this earlier – we just need to do some housekeeping here to hook it up.

U32 {YourName}Analyzer::GenerateSimulationData(U64 minimum_sample_index, U32

device_sample_rate, SimulationChannelDescriptor** simulation_channels)

{

 if(mSimulationInitilized == false)

 {

 mSimulationDataGenerator.Initialize(GetSimulationSampleRate(),

mSettings.get());

 mSimulationInitilized = true;

 }

Saleae Analyzer SDK 1.1.8

67 Copyright 2011 Saleae LLC. All Rights Reserved.

 return mSimulationDataGenerator.GenerateSimulationData(minimum_sample_index,

device_sample_rate, simulation_channels);

}

U32 SerialAnalyzer::GetMinimumSampleRateHz()

This function is called to see if the user’s selected sample rate is sufficient to get good results for this

analyzer.

For Serial, for instance, we would like the sample rate to be x4 higher that the serial bit rate.

For other, typically synchronous, protocols, you may not ask the user to enter the data’s bit rate –

therefore you can’t know ahead of time what sample rate is required. In that case, you can either

return the smallest sample rate (25000), or return a value that will be fast enough for your simulation.

However, your simulation really should adjust its own rate depending on the sample rate – for example,

when simulation SPI you should probably make the bit rate something like 4x the sample rate. This will

allow the simulation to work perfectly no matter what the sample rate is.

The rule of thumb is to require oversampling by x4 if you know the data’s bit rate, otherwise just return

25000.

Here’s what we do in SerialAnalyzer.cpp

U32 SerialAnalyzer::GetMinimumSampleRateHz()

{

 return mSettings->mBitRate * 4;

}

const char* {YourName}Analyzer::GetAnalyzerName() const

Simply return the name you would like to see in the “Add Analyzer” drop down.

return "Async Serial";

const char* GetAnalyzerName()

Return the same string as in the previous function.

return "Async Serial";

Analyzer* CreateAnalyzer()

Return a pointer to a new instance of your Analyzer-derived class.

return new {YourName}Analyzer();

void DestroyAnalyzer(Analyzer* analyzer)

Simply call delete on the provided pointer.

Saleae Analyzer SDK 1.1.8

68 Copyright 2011 Saleae LLC. All Rights Reserved.

delete analyzer;

void {YourName}Analyzer::WorkerThread()

Ok, now that everything else is taken care of, let’s look at the most important part of the analyer in

detail.

First, we’ll new our AnalyzerResults-derived object.

mResults.reset(new {YourName}AnalyzerResults(this, mSettings.get()));

 Well provide a pointer to our results to the base class:

SetAnalyzerResults(mResults.get());

Let’s indicate which channels we’ll be displaying results on (in the form of bubbles). Usually this will

only be one channel. (Except in the case of SPI, where we’ll want to put bubbles on both the MISO and

MISO lines.) Only indicate where we will display bubbles – other markup, like tick marks, arrows, etc,

are not bubbles, and should not be reported here.

mResults->AddChannelBubblesWillAppearOn(mSettings->mInputChannel);

 We’ll probably want to know (and save in a member variable) the sample rate.

mSampleRateHz = GetSampleRate();

Now we need to get access to the data itself. We’ll need to get pointers to AnalyzerChannelData objects

for each channel we’ll need data from. For Serial, we’ll just need one. For SPI, we might need 4. Etc.

mSerial = GetAnalyzerChannelData(mSettings->mInputChannel);

We’ve now ready to start traversing the data, and recording results. We’ll look at each of these tasks in

turn.

First, a word of advice

A protocol is typically fairly straightforward, when it behaves exactly as it supposed to. The more your

analyzer needs to deal with exceptions to the rule, the more sophisticated it’ll need to be. The best bet

is probably to start as simple as possible, and add more “gotchas” as they are discovered, rather than to

try and design an elaborate, bulletproof analyzer from the start, especially when you’re new to the API.

AnalyzerChannelData

AnalyzerChannelData is the class that will give us access to the data from a particular input. This will

provide data in a serialized form – we will not have “random access” to any bit in the saved data.

Rather, we will start at the beginning, and move forward as more data becomes available. In fact we’ll

never know when we’re at the “end” of the data or not – attempts to move forward in the stream will

block until more data becomes available. This will allow our analyzer to process data in a real -time

Saleae Analyzer SDK 1.1.8

69 Copyright 2011 Saleae LLC. All Rights Reserved.

manner. (It may backlog, of course, if it can’t keep up – although generally the collection will end at

some point and we’ll be able to finish).

AnalyzerChannelData – State

If we’re not sure where are in the stream, or if the input is currently high or low, we can just ask:

U64 GetSampleNumber();

BitState GetBitState();

AnalyzerChannelData – Basic Traversal

We’ll need some ability to move forward in the stream. We have three basic ways to do this.

U32 Advance(U32 num_samples);

We can move forward in the stream by a specific number of samples. This function will return how

many times the input toggled (changed from a high to a low, or low to a high) to make this move.

U32 AdvanceToAbsPosition(U64 sample_number);

If we want to move forward to a particular absolute position, we can use this function. It also returns

the number of times the input changed during the move.

void AdvanceToNextEdge();

We also might want to move forward until the state changes. After calling this function you might want

to call GetSampleNumber to find out how far you’ve come.

AnalyzerChannelData – Advanced Traversal (looking ahead without moving)

As you develop your analyzer(s) certain tasks may come up that call for more sophisticated traversal.

Here are some ways of doing it.

U64 GetSampleOfNextEdge();

This function does not move your position in the stream. Remember, you can not move backward in the

stream, so sometimes seeing what’s up ahead without moving can be very important.

bool WouldAdvancingCauseTransition(U32 num_samples);

This function does not move your position in the stream. Here you find out if moving forward a given

number of samples would cause the bit state (low or high) to change.

bool WouldAdvancingToAbsPositionCauseTransition(U64 sample_number);

This is the same as the prior function, except you provide the absolute position.

Saleae Analyzer SDK 1.1.8

70 Copyright 2011 Saleae LLC. All Rights Reserved.

AnalyzerChannelData – Keeping track of the smallest pulse.

When we were implementing Serial’s “autobaud” it was clear that keeping track of the minimum pulse

length over the entire stream was overly cumbersome. If you need this capability for some reason,

these functions will provide it for you (it’s turned off by default)

void TrackMinimumPulseWidth();

U64 GetMinimumPulseWidthSoFar();

Filling in and saving Frames

Using the above AnalyzerChannelData class, we can now move through a channel’s data and analyze it.

Now let’s discus how to store results.

We described Frames when talking about the AnalyzerResults-derived class. A Frame is the basic unit

results are saved in. Frames have:

 starting and ending time (starting and ending sample number),

 x2 64-bit values to save results in

 an 8-bit type variable – to specify the type of Frame

 an 8-bit flags variable – to specify Yes/No types of results.

When we have analyzed far enough, and now have a complete Frame we would like to record, we do it

like this:

Frame frame;

frame.mStartingSampleInclusive = first_sample_in_frame;

frame.mEndingSampleInclusive = last_sample_in_frame;

frame.mData1 = the_data_we_collected;

//frame.mData2 = some_more_data_we_collected;

//frame.mType = OurTypeEnum; //unless we only have one type of frame

frame.mFlags = 0;

if(such_and_such_error == true)

 frame.mFlags |= SUCH_AND_SUCH_ERROR_FLAG | DISPLAY_AS_ERROR_FLAG;

if(such_and_such_warning == true)

 frame.mFlags |= SUCH_AND_SUCH_WARNING_FLAG | DISPLAY_AS_WARNING_FLAG;

mResults->AddFrame(frame);

mResults->CommitResults();

ReportProgress(frame.mEndingSampleInclusive);

First we make a Frame on the stack. Then we fill in all its values. If there’s a value you don’t need, to

save time you can skip setting it. mFlags should always be set to zero, however, because certan pre-

Saleae Analyzer SDK 1.1.8

71 Copyright 2011 Saleae LLC. All Rights Reserved.

defined flags will cause the results bubble to indicate a warning or error (DISPLAY_AS_WARNING_FLAG,

and DISPLAY_AS_ERROR_FLAG).

Part of the Frame is expected to be filled in correctly because it’s used automaticly by other systems. In

particular,

 mStartingSampleInclusive

 mEndingSampleInclusive

 mFlags

should be filled in properly.

Other parts of the Frame are only there so you can create text descriptions or export the data to a

desired format.

To save a Frame, Use AddFrame from your AnalyzerResults-derived class. Note that frames must be

added in-order, and must not overlap. In other words, you can’t add a Frame from an earlier time

(smaller sample number) after adding a Frame form a later time (larger sample number).

Immediately after adding a Frame, call CommitResults. This makes the Frame accessable to the external

system.

Also call the Analyzer base class ReportProgress. Provide it with it the largest sample number you have

processed.

Adding Markers

Makers are visual elements you can place on the waveform to highlight various waveform features as

they relate to your protocol. For example, in our asynchronous serial analyzer, we place little white dots

at the locations where we sample the input’s state. You can also use markers to indicate where the

protocol falls out of specification, a rising or falling clock edge, etc. You specify where to put the marker

(the sample number), which channel to display it on, and which graphical symbol to use.

void AddMarker(U64 sample_number, MarkerType marker_type, Channel& channel);

For example, from SerialAnalyzer.cpp:

mResults->AddMarker(marker_location, AnalyzerResults::Dot, mSettings->mInputChannel);

Currently, the available graphical artifacts are

enum MarkerType { Dot, ErrorDot, Square, ErrorSquare, UpArrow, DownArrow, X, ErrorX,

Start, Stop, One, Zero };

Like Frames, you must add Markers in order.

Markers are strictly for graphical markup, they can not be used to help generate display text, export

files, etc. Only Frames are accessable to do that.

Saleae Analyzer SDK 1.1.8

72 Copyright 2011 Saleae LLC. All Rights Reserved.

Packets and Trasactions

Packets and Trasactions are only moderatly supported as of now, but they will be becoming more

prominate in the software.

Packets are sequential collections of Frames. Grouping Frames into Packets as you create them is easy:

U64 CommitPacketAndStartNewPacket();

void CancelPacketAndStartNewPacket();

When you add a Frame, it will automatically be added to the current Packet. When you’ve added all the

Frames you want in a Packet, call CommitPacketAndStartNewPacket. In some conditions, especially

errors, you will want start a new packet without committing the old one. For this, call

CancelPacketAndStartNewPacket.

Note that CommitPacketAndStartNewPacket returns an packet id. You can use this id to assign a

particular packet to a transaction.

void AddPacketToTransaction(U64 transaction_id, U64 packet_id);

The transaction_id is an ID you generate yourself.

The analyzers created by Saleae do not yet use Transactions, and the current Analyzer probably never

will. Transactions are provided for higher-level protocols, and you may not want to bother, especially

since they aren’t used in the Logic software yet. We will use Transactions in analyzers for more

sophisticated protocols in the future.

Packets on the other hand tend to be fairly applicable for lower level protocls, although not in entirly the

same ways. For example:

 Serial Analyzer – no packet support makes sense at this level. (there are many more structured

protocols that use asynchronous serial where packets would be applicable)

 SPI Analyzer – packets are used to delimit between periods when the enable line is active.

 I2C Analyzer – packets are used to delimit periods between a start/restart and a stop.

 CAN Analyzer – packets are used to represent, well, CAN packets.

 UNI/O – packets are used to group Frames in a UNI/O sequence.

 1-Wire – packets are used to group 1-Wire sequences.

 I2S/PCM – packets aren’t used.

Currently, Packets are only used when exporting data to text/csv. In the future, analyzer tabular views

will support nesting Frames into Packets, and identifying Transactions (ids) associated with particular

Packets. Generating the textual content to support this is provided in your AnalyzerResults-derived

class.

Saleae Analyzer SDK 1.1.8

73 Copyright 2011 Saleae LLC. All Rights Reserved.

When using Packet ids when exporting data to text/csv, use the GetPacketContainingFrameSequential

function, to avoid searching for the packet every time. The GetPacketContainingFrame will do a full

search and be much less efficient.

	Setting up an Analyzer Project
	Visual Studio
	Debugging an Analyzer with Visual Studio
	Linux
	Mac OSX
	Build Script Based Project
	Debugging with GDB
	XCode based Project
	Running & Debugging your Analyzer

	Writing your Analyzer’s Code
	Analyzer Settings
	{YourName}AnalyzerSettings.h
	User-modifiable settings
	AnalyzerSettingsInterfaces

	{YourName}AnalyzerSettings.cpp
	The Constructor
	Setting up each AnalyzerSettingInterface object
	AnalyzerSettingInterfaceChannel
	AnalyzerSettingInterfaceNumberList
	AnalyzerSettingInterfaceInteger
	AnalyzerSettingInterfaceText
	AnalyzerSettingInterfaceBool

	Specifing the export options
	Specifying which channels are in use

	The Destructor
	bool {YourName}AnalyzerSettings::SetSettingsFromInterfaces()
	void {YourName}AnalyzerSettings::UpdateInterfacesFromSettings()
	void {YourName}AnalyzerSettings::LoadSettings(const char* settings)
	const char* {YourName}AnalyzerSettings::SaveSettings()

	SimulationDataGenerator
	{YourName}SimulationDataGenerator.h
	Overview

	{YourName}SimulationDataGenerator.cpp
	Constructor/Destructor
	void {YourName}SimulationDataGenerator::Initialize(U32 simulation_sample_rate, {YourName}AnalyzerSettings* settings)
	BitState
	Sample Rate (samples per second)
	Sample Number
	SimulationChannelDescriptor
	void Advance(U32 num_samples_to_advance);
	void Transition();
	void TransitionIfNeeded(BitState bit_state);
	BitState GetCurrentBitState();
	U64 GetCurrentSampleNumber();

	ClockGenerator
	void Init(double target_frequency, U32 sample_rate_hz);
	U32 AdvanceByHalfPeriod(double multiple = 1.0);
	U32 AdvanceByTimeS(double time_s);

	void {YourName}SimulationDataGenerator::Initialize(U32 simulation_sample_rate, {YourName}AnalyzerSettings* settings)
	U32 {YourName}SimulationDataGenerator::GenerateSimulationData(U64 largest_sample_requested, U32 sample_rate, SimulationChannelDescriptor** simulation_channel)
	Simulating Multiple Channels
	Examples of generating simulation data
	void SerialSimulationDataGenerator::CreateSerialByte(U64 value)
	BitExtractor
	AnalyzerHelpers

	void I2cSimulationDataGenerator::CreateBit(BitState bit_state)
	void I2cSimulationDataGenerator::CreateI2cTransaction(U8 address, I2cDirection direction, U8 data)
	void SpiSimulationDataGenerator::OutputWord_CPHA1(U64 mosi_data, U64 miso_data)
	void SpiSimulationDataGenerator::CreateSpiTransaction()
	U32 SpiSimulationDataGenerator::GenerateSimulationData(U64 largest_sample_requested, U32 sample_rate, SimulationChannelDescriptor** simulation_channels)

	AnalyzerResults
	{YourName}AnalyzerResults.h
	{YourName}AnalyzerResults.cpp
	Frames, Packets, and Transactions
	Frame
	void {YourName}AnalyzerResults::GenerateBubbleText(U64 frame_index, Channel& channel, DisplayBase display_base)
	void {YourName}AnalyzerResults::GenerateExportFile(const char* file, DisplayBase display_base, U32 export_type_user_id)
	void SerialAnalyzerResults::GenerateFrameTabularText(U64 frame_index, DisplayBase display_base)
	void SerialAnalyzerResults::GeneratePacketTabularText(U64 packet_id, DisplayBase display_base)
	void SerialAnalyzerResults::GenerateTransactionTabularText (U64 transaction_id, DisplayBase display_base)

	Analyzer
	{YourName}Analyzer.h
	{YourName}Analyzer.cpp
	Constructor
	Destructor
	void {YourName}Analyzer::WorkerThread()
	bool {YourName}Analyzer::NeedsRerun()
	U32 {YourName}Analyzer::GenerateSimulationData(U64 minimum_sample_index, U32 device_sample_rate, SimulationChannelDescriptor** simulation_channels)
	U32 SerialAnalyzer::GetMinimumSampleRateHz()
	const char* {YourName}Analyzer::GetAnalyzerName() const
	const char* GetAnalyzerName()
	Analyzer* CreateAnalyzer()
	void DestroyAnalyzer(Analyzer* analyzer)
	void {YourName}Analyzer::WorkerThread()
	First, a word of advice
	AnalyzerChannelData
	AnalyzerChannelData – State
	AnalyzerChannelData – Basic Traversal
	U32 Advance(U32 num_samples);
	U32 AdvanceToAbsPosition(U64 sample_number);
	void AdvanceToNextEdge();

	AnalyzerChannelData – Advanced Traversal (looking ahead without moving)
	U64 GetSampleOfNextEdge();
	bool WouldAdvancingCauseTransition(U32 num_samples);
	bool WouldAdvancingToAbsPositionCauseTransition(U64 sample_number);

	AnalyzerChannelData – Keeping track of the smallest pulse.
	Filling in and saving Frames
	Adding Markers
	Packets and Trasactions

