format file

This commit is contained in:
Sijmen 2019-03-08 12:20:59 +01:00
parent ff7cc3f8f3
commit 8cdfa7b878

View file

@ -64,12 +64,11 @@ class Model:
plt.ion() plt.ion()
self.colors = matplotlib.colors.ListedColormap( self.colors = matplotlib.colors.ListedColormap(
["black", "green", "red", "yellow"]) ["black", "green", "red", "yellow"])
bounds = [Human.DEAD, Human.HEALTHY, Human.INFECTED, Human.IMMUNE]
self.norm = matplotlib.colors.BoundaryNorm(bounds, self.colors.N)
def recycle_human(self): def recycle_human(self):
""" """
Determine if a human dies of natural causes and then replace them by a new human Determine if a human dies of natural causes and then replace them by a
new human.
""" """
# Get all living humans # Get all living humans
humans = np.transpose(np.where(self.grid != Human.DEAD)) humans = np.transpose(np.where(self.grid != Human.DEAD))
@ -88,13 +87,15 @@ class Model:
self.stats["natural deaths"] += death_count self.stats["natural deaths"] += death_count
# Pick a random, unpopulated spot # Pick a random, unpopulated spot
births = np.array(random.sample(list(np.transpose(np.where(self.grid == Human.DEAD))), births = np.array(random.sample(
list(np.transpose(np.where(self.grid == Human.DEAD))),
death_count)) death_count))
# Deliver the newborns # Deliver the newborns
for birth in births: for birth in births:
self.grid[birth[0]][birth[1]] = np.random.choice([Human.HEALTHY, Human.IMMUNE], self.grid[birth[0]][birth[1]] = \
p=[1-self.immunepct, self.immunepct]) np.random.choice((Human.HEALTHY, Human.IMMUNE),
p=(1 - self.immunepct, self.immunepct))
def do_malaria(self): def do_malaria(self):
""" """
@ -112,10 +113,10 @@ class Model:
self.stats["malaria deaths"] += len(np.where(deaths)[0]) self.stats["malaria deaths"] += len(np.where(deaths)[0])
def feed(self): def feed(self):
#TODO: dit refactoren?
""" """
Feed the mosquitos that want to and can be fed Feed the mosquitos that want to and can be fed
""" """
# TODO: dit refactoren?
for mos in self.mosquitos: for mos in self.mosquitos:
if not mos.hungry: if not mos.hungry:
continue continue
@ -126,11 +127,14 @@ class Model:
self.stats["mosquitos fed"] += 1 self.stats["mosquitos fed"] += 1
mos.hungry = False mos.hungry = False
# check if healthy human needs to be infected or mosquito becomes infected from eating # check if healthy human needs to be infected or mosquito
if state == Human.HEALTHY and mos.infected and random.uniform(0, 1) < self.mh_infpct: # becomes infected from eating
if state == Human.HEALTHY and mos.infected \
and random.uniform(0, 1) < self.mh_infpct:
self.grid[mos.x, mos.y] = Human.INFECTED self.grid[mos.x, mos.y] = Human.INFECTED
self.stats["humans infected"] += 1 self.stats["humans infected"] += 1
elif state == Human.INFECTED and not mos.infected and random.uniform(0, 1) < self.hm_infpct: elif state == Human.INFECTED and not mos.infected \
and random.uniform(0, 1) < self.hm_infpct:
self.stats["mosquitos infected"] += 1 self.stats["mosquitos infected"] += 1
mos.infected = True mos.infected = True
@ -139,7 +143,8 @@ class Model:
Determines which mosquitos should get hungry Determines which mosquitos should get hungry
""" """
for mos in self.mosquitos: for mos in self.mosquitos:
mos.hungry = not mos.hungry and random.uniform(0, 1) < self.mhungrypct mos.hungry = not mos.hungry and \
random.uniform(0, 1) < self.mhungrypct
def get_movementbox(self, x: int, y: int): def get_movementbox(self, x: int, y: int):
""" """
@ -151,7 +156,8 @@ class Model:
y_min = (y - 1) y_min = (y - 1)
y_max = (y + 1) y_max = (y + 1)
indices = [(i % self.width, j % self.height) for i in range(x_min, x_max + 1) indices = [(i % self.width, j % self.height)
for i in range(x_min, x_max + 1)
for j in range(y_min, y_max + 1)] for j in range(y_min, y_max + 1)]
# remove current location from the indices # remove current location from the indices
@ -168,7 +174,7 @@ class Model:
movement = self.get_movementbox(mosq.x, mosq.y) movement = self.get_movementbox(mosq.x, mosq.y)
# check for nets, and thus legal locations to go for the mosquito # check for nets, and thus legal locations to go for the mosquito
legal_moves = np.where(self.nets[tuple(movement.T)] == False)[0] legal_moves = np.where(~self.nets[tuple(movement.T)])[0]
# choose random new position # choose random new position
new_pos = random.choice(legal_moves) new_pos = random.choice(legal_moves)
@ -228,7 +234,8 @@ class Model:
This functions runs the simulation This functions runs the simulation
""" """
print(chr(27) + "[2J") print(chr(27) + "[2J")
# actual simulation runs inside try except to catch keyboard interrupts and always print stats # Actual simulation runs inside try except to catch keyboard interrupts
# and always print stats
try: try:
for t in range(self.time_steps): for t in range(self.time_steps):
print("Simulating timestep: {}".format(t), end='\r') print("Simulating timestep: {}".format(t), end='\r')
@ -246,7 +253,8 @@ class Model:
""" """
Compiles a comprehensive list of statistics of the simulation Compiles a comprehensive list of statistics of the simulation
""" """
self.stats["total deaths"] = self.stats["malaria deaths"] + self.stats["natural deaths"] self.stats["total deaths"] = \
self.stats["malaria deaths"] + self.stats["natural deaths"]
# print(np.where(self.nets)) # print(np.where(self.nets))
self.stats["net count"] = len(np.where(self.nets)[0]) self.stats["net count"] = len(np.where(self.nets)[0])
@ -280,7 +288,7 @@ class Model:
# this function draws the humans # this function draws the humans
plt.title("t={}".format(t)) plt.title("t={}".format(t))
# draw the grid # draw the grid
plt.imshow(self.grid, cmap=self.colors, norm=self.norm) plt.imshow(self.grid, cmap=self.colors)
# draw nets # draw nets
net_locations = np.where(self.nets) net_locations = np.where(self.nets)